Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheng-Hao Hsu is active.

Publication


Featured researches published by Sheng-Hao Hsu.


Journal of Materials Chemistry | 2013

Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cells using P3HT as a morphology control agent

Sheng-Yung Chang; Hsueh-Chung Liao; Yu-Tsun Shao; Yu-Ming Sung; Sheng-Hao Hsu; Chun-Chih Ho; Wei-Fang Su; Yang-Fang Chen

The development of low bandgap conducting polymers has made bulk heterojunction solar cells a viable low cost renewable energy source. The high boiling point of 1,8-diiodooctane (DIO) is usually used to control the morphology of the active layer consisting of a conducting polymer and PCBM, so that a high power conversion solar cell can be achieved. We report here an alternative approach using nonvolatile, crystalline and conducting P3HT as an effective morphology control agent. A model system of PCPDTBT/PC61BM was selected for this study. The change of optoelectronic properties with the introduction of P3HT was monitored by measuring the absorption spectra and charge carrier mobility, and the morphology change with the introduction of P3HT in the active layer was monitored by AFM, TEM, and GIXRD. The results indicate that favorable bi-continuous phase separation and appropriate domain size of each phase can be achieved to facilitate fast charge transport, and thus improve the power conversion efficiency of the solar cell. By adding 1 wt% P3HT into the blend of PCPDTBT/PC61BM, the power conversion efficiency can be improved by 20%. Moreover, with the incorporation of 1 wt% P3HT to the blend of PCPDTBT/PC61BM with DIO, the power conversion efficiency can be further increased by 17%. The strategy of this study can be expanded to other low bandgap conducting polymers for high efficiency bulk heterojunction solar cells.


ACS Applied Materials & Interfaces | 2013

Molecular Structure Effect of Pyridine-Based Surface Ligand on the Performance of P3HT:TiO2 Hybrid Solar Cell

Jhih-Fong Lin; Guang-Yao Tu; Chun-Chih Ho; Chun-Yu Chang; Wei-Che Yen; Sheng-Hao Hsu; Yang-Fang Chen; Wei-Fang Su

Colloid TiO(2) nanorods are used for solution-processable poly(3-hexyl thiophene): TiO(2) hybrid solar cell. The nanorods were covered by insulating ligand of oleic acid (OA) after sol-gel synthesis. Three more conducting pyridine type ligands: pyridine, 2,6-lutidine (Lut) and 4-tert-butylpyridine (tBP) were investigated respectively to replace OA. The power conversion efficiency (PCE) of the solar cell was increased because the electronic mobility of pyridine-type ligand-modified TiO(2) is higher than that of TiO(2)-OA. The enhancement of PCE is in the descending order of Lut > pyridine > tBP because of the effective replacement of OA by Lut. The PCE of solar cell can be further enhanced by ligand exchange of pyridine type ligand with conjugating molecule of 2-cyano-3-(5-(7-(thiophen-2-yl)-benzothiadiazol-4-yl) thiophen-2-yl) acrylic acid (W4) on TiO(2) nanorods because W4 has aligned bandgap with P3HT and TiO(2) to facilitate charge separation and transport. The electronic mobility of two-stage ligand exchanged TiO(2) is improved furthermore except Lut, because it adheres well and difficult to be replaced by W4. The amount of W4 on TiO(2)-tBP is 3 times more than that of TiO(2)-Lut (0.20 mol % vs. 0.06 mol %). Thus, the increased extent of PCE of solar cell is in the decreasing order of tBP > pyridine > Lut. The TiO(2)-tBP-W4 device has the best performance with 1.4 and 2.6 times more than TiO(2)-pyridine-W4 and TiO(2)-Lut-W4 devices, respectively. The pKa of the pyridine derivatives plays the major role to determine the ease of ligand exchange on TiO(2) which is the key factor mandating the PCE of P3HT:TiO(2) hybrid solar cell. The results of this study provide new insights of the significance of acid-base reaction on the TiO(2) surface for TiO(2)-based solar cells. The obtained knowledge can be extended to other hybrid solar cell systems.


RSC Advances | 2015

A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering

Po-Hsuen Chen; Hsueh-Chung Liao; Sheng-Hao Hsu; Rung-Shu Chen; Ming-Chung Wu; Yi-Fan Yang; Chau-Chung Wu; Min-Huey Chen; Wei-Fang Su

The present work demonstrates a biomimetic electrospun scaffold based on polyurethane (PU) and ethyl cellulose (EC), featuring uniform fibrous nanostructures and three dimensional porous networks. The relationship between processing conditions and fibrous nanostructures is established which guides the rational processing with tunable fiber diameters. Additionally, the developed scaffold template reveals biocompatibility in retention and proliferation of cardiac myoblast H9C2 cells. The high mechanical strength of the PU/EC scaffolds enables the processing and handling of an ultrathin patch. Their elastomeric characteristics revealed the compatibility between the patch and contractile tissues. Furthermore, anisotropic PU/EC scaffolds with aligned nanofibers were successfully fabricated, exhibiting higher mechanical strength and essential characteristics for the survival and function of cardiac cells with native anisotropy. This work demonstrates a bioengineered PU/EC fibrous scaffold with uniform nanostructural webs and provides insight into the relationships between processing control, nanostructures and associated properties, with promising potential in cardiac tissue engineering.


ACS Applied Materials & Interfaces | 2013

Omniphobic Low Moisture Permeation Transparent Polyacrylate/Silica Nanocomposite

Sheng-Hao Hsu; Yuan-Ling Chang; Yu-Chieh Tu; Chieh-Ming Tsai; Wei-Fang Su

We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc.


Acta Biomaterialia | 2012

Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite

Sheng-Hao Hsu; Rung-Shu Chen; Yuan-Ling Chang; Min-Huey Chen; Kuo-Chung Cheng; Wei-Fang Su

Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility, comparable to commercialized composites. The results indicate that this novel LC nanocomposite is worthy of development and has potential for further applications in clinical dentistry.


Biomaterials | 2012

Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin.

Yen-Hui Chan; Tsung-Wei Huang; Ya-Shuan Chou; Sheng-Hao Hsu; Wei-Fang Su; Pei-Jen Lou; Tai-Horng Young

As a potential solution for patients to retrieve their lost salivary gland functions, tissue engineering of an auto-secretory device is profoundly needed. Under serum-free environment, primary human parotid gland acinar (PGAC) cells can be obtained. After reaching confluence, PGAC cells spontaneously form three-dimension (3D) cell aggregations, termed post-confluence structure (PCS), and change their behaviors. Poly (lactic-co-glycolic acid) (PLGA) has been widely used in the field of biomedical applications because of its biodegradable properties for desired functions. Nonetheless, the role of PLGA in facilitating PGAC cells to form PCS has seldom been explored to recover epithelial characteristics. In this study, PGAC cells were found to have a greater tendency to form PCS on PLGA than on tissue culture polystyrene (TCPS). By tracing cell migration paths and modulating E-cadherin activity with specific inhibitor or antibody, we demonstrated that the static force of homophilic interaction on surfaces of individual cells, but not the dynamics of cell migration, played a more important role in PCS formation. Thus, PLGA was successfully confirmed to support PGAC cells to form more PCS through the effects on enhancing E-cadherin expression, which is associated with FAK/ILK/Snail expression in PGAC cells. This result indicates that selective appropriate biomaterials may be potentially useful in generating 3D PCS on two-dimension (2D) substrate without fabricating a complex 3D scaffold.


Journal of Materials Chemistry | 2010

Transparent hydrophobic durable low moisture permeation poly(fluoroimide acrylate)/SiO2 nanocomposite from solventless photocurable resin system

Chien-Chih Lin; Sheng-Hao Hsu; Yuan-Ling Chang; Wei-Fang Su

In this article, we report a novel high performance nanocomposite made from environmentally friendly and energy conserving solventless photocurable patternable resin system. The system contains a fluoroimide acrylate oligomer, acrylate monomer, photoinitiator and SiO2 nanoparticles. The fluoroimide acrylate oligomer was synthesized by reacting 2 mole equivalent of 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) with 4,4′-(hexafluoroisopropylidene) diamine (6FpDA) first to form fluoroimide dianhydride, and then further reacting with 2 moles of 2-hydroxy ethyl methacrylate (HEMA). The fluoroimide acrylate oligomer was specially designed with carboxylic acid functionality. As compared with bis-phenol A acrylate oligomer, the fluoroimide acrylate oligomer nanocomposite shows an improvement in both physical properties and chemical properties. This new nanocomposite exhibits good cross hatch adhesive strength (>95% on glass) and unusually high hydrophobicity (>140° contact angle). The nanocomposite also shows excellent transparency (>90% transmission at 400–800 nm for 100 μm film), high thermal stability and mechanical durability. The water absorption and the water vapor permeation of this nanocomposite are reduced to at least one quarter of those of the bis-phenol A acrylate nanocomposite. The chemical characteristics of the fluoroimide acrylate and the formation of nanodomains in the nanocomposite play major roles in providing the outstanding performance.


Journal of Materials Chemistry C | 2014

High refractive index transparent nanocomposites prepared by in situ polymerization

Chieh-Ming Tsai; Sheng-Hao Hsu; Chun-Chih Ho; Yu-Chieh Tu; Hsin-Chien Tsai; Chung-An Wang; Wei-Fang Su

High refractive index transparent nanocomposites have been developed by in situ polymerization of a precursor that contains functional monomers and surface modified anatase TiO2 nanoparticles for optoelectronic applications. The monomers are in the liquid form, so environmentally friendly solventless precursors can be prepared. The precursor can be processed into various shapes or thick films (>50 microns) of the nanocomposite. The relationships of the chemical structure of the organic matrix, nanoparticle content and dispersity with the refractive index, transparency, mechanical and thermal properties are systematically investigated. The refractive index, and mechanical and thermal properties of the nanocomposite are increased with increasing TiO2 content and aromatic structure in the organic matrix due to their rigid characteristics. The transparency of the nanocomposite is increased with increasing TiO2 content and dispersity. At the same loading of nanoparticles, the higher dispersity and the better transparency are due to the less extent of Rayleigh scattering. At 18 vol% (60 wt%) of TiO2, the acetic acid modified TiO2/poly(4-vinyl benzyl alcohol) nanocomposite has a refractive index of 1.73 and excellent transparency (>85% from 500 nm to 800 nm). The refractive index of the nanocomposite can be further increased to 1.77 by replacing aliphatic acetic acid modified TiO2 with aromatic phenyl acetic acid modified TiO2. The results of this work provide new knowledge and a new pathway to design a polymer based high refractive index material.


Journal of The Formosan Medical Association | 2015

Liquid crystalline epoxy nanocomposite material for dental application

Yun-Yuan Tai; Sheng-Hao Hsu; Rung-Shu Chen; Wei-Fang Su; Min-Huey Chen

BACKGROUND/PURPOSE Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. METHODS In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. RESULTS The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. CONCLUSION The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.


PLOS ONE | 2013

Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium - Surface Characteristics and Biological Effects

Wan-Yu Tseng; Sheng-Hao Hsu; Chieh-Hsiun Huang; Yu-Chieh Tu; Shao-Chin Tseng; Hsuen-Li Chen; Min-Huey Chen; Wei-Fang Su; Li-Deh Lin

Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility.

Collaboration


Dive into the Sheng-Hao Hsu's collaboration.

Top Co-Authors

Avatar

Wei-Fang Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Min-Huey Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chun-Chih Ho

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. C. Kuo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Rung-Shu Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

S.C. Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tai-Horng Young

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Y.H. Fang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yu-Chieh Tu

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge