Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheng-Lin Qiao is active.

Publication


Featured researches published by Sheng-Lin Qiao.


Advanced Materials | 2015

In Situ Formation of Nanofibers from Purpurin18‐Peptide Conjugates and the Assembly Induced Retention Effect in Tumor Sites

Di Zhang; Guo-Bin Qi; Ying-Xi Zhao; Sheng-Lin Qiao; Chao Yang; Hao Wang

An assembly-induced retention effect for enhanced tumor photoacoustic (PA) imaging and therapeutics is described. A responsive small-molecule precursor is prepared that simultaneously self-assembles into nanofibers in tumor sites that exhibit an assembly-induced retention effect, which results in an improved PA imaging signal and enhanced therapeutic efficacy. This successful proof-of-concept study paves the way to develop novel supramolecular biomaterials for cancer diagnostics and therapeutics.


Advanced Materials | 2015

Self‐Assembled Autophagy‐Inducing Polymeric Nanoparticles for Breast Cancer Interference In‐Vivo

Yi Wang; Zeng-Ying Qiao; Hong-Wei An; Sheng-Lin Qiao; Lei Wang; R.P. Yeshan J. Rajapaksha; Hao Wang

A peptide-conjugated poly(β-amino ester) that self-assembles into micelle-like nanoparticles is prepared by a convenient and modular supramolecular approach. The polymer-beclin-1 (P-Bec1) nanoparticles display enhanced cytotoxicity to breast cancer cells through induction of autophagy. This approach overcomes two major limitations of the haploinsufficient tumor suppressor Bec1 compared to small-molecule drugs: poor delivery to tumors owing to enzymatic degradation, and unstable, non-specific bio-distribution and targeting in the tumor tissues.


Polymer Chemistry | 2014

One-pot synthesis of pH-sensitive poly(RGD-co-β-amino ester)s for targeted intracellular drug delivery

Zeng-Ying Qiao; Sheng-Lin Qiao; Gang Fan; Yun-Shan Fan; Yu Chen; Hao Wang

We report a convenient synthetic approach for one-pot preparation of poly(β-amino ester)s copolymerized with peptides. A family of copolymers with tertiary amine groups was synthesized by copolymerizing di(ethylene glycol) diacrylate (DEDA), poly(ethylene glycol) diacrylate (PEGDA), 3-(diethylamino)propylamine (DEPA) and GGRGD peptides using the Michael addition reaction. The hydrophobic/hydrophilic properties of the resulting copolymers are adjusted by altering the feed ratios of DEDA and PEGDA. The copolymers self-assembled into nanoparticles with sizes around 60–140 nm in aqueous media, which were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. The copolymers exhibit pH sensitive properties upon introduction of DEPA moieties, which were proved by pyrene fluorescence and pH titration measurements. The acid-triggered dissociation behaviors of the nanoparticles were studied by DLS and Nile red (NR) release experiments, revealing that the sizes of dissociated copolymer nanoparticles were closely relevant to their compositions. The nanoparticles can load the hydrophobic anticancer drug, i.e., doxorubicin (DOX). The DOX-loaded nanoparticles were stable in a neutral phosphate buffer solution with a payload leakage less than 20% at 37 °C. However, a significant acid-triggered DOX release was accomplished at pH 5.0 with release efficiency up to 60–80%. Because of the decoration of Arg-Gly-Asp (RGD) peptides onto the poly(β-amino ester)s, the DOX-encapsulated nanoparticles formed by poly(RGD-co-β-amino ester)s can be internalized by cancer cells via an αvβ3 integrin-mediated endocytosis pathway and accumulated in the lysosomes that provide an acidic environment to promote the release of DOX. Finally, the DOX-encapsulated copolymer nanoparticles with the targeted RGD peptide exhibited higher efficiency to kill U87 human glioblastoma cancer cells than that without RGD, which was further proved by cellular uptake of DOX-loaded nanoparticles.


Biomaterials | 2017

Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment.

Yi Wang; Sheng-Lin Qiao; Hong-Wei An; Yang Ma; Zeng-Ying Qiao; R.P. Yeshan J. Rajapaksha; Hao Wang

Immunotherapy has shown promising treatment effects for a variety of cancers. However, the immune treatment efficiency for solid tumors is limited owing to insufficient infiltration of immune cells into solid tumors. The conversion of tumor-supportive macrophages to tumor-suppressive macrophages, inducing the functional reversal of macrophages, is an effective method and contributes to a subsequent antitumor response. The current challenge in the field is the poor distribution and systemic side effects associated with the use of cytokines. As a solution to this issue, we designed and synthesized microenvironment-responsive nanoparticles (P) with IL-12 payload (IL-12⊂P1). These nanoparticles could promote the systemic administration and release of IL-12 in the tumor microenvironment, and the locally responsive property of IL-12⊂P1 could subsequently re-educate tumor-associated macrophages (TAMs). In particular, our results illustrated the great therapeutic effects derived from the functional conversion of macrophages. Our strategy was to design a microenvironment-responsive material for local macrophage modification to overcome the physiological barrier of solid tumors. The shifting of macrophage phenotypes via IL-12⊂P1 achieved immunomodulation in the microenvironment for cancer therapy, with negligible cytotoxicity. We expect that the functional regulation of TAMs by pH-responsive nanomaterials is a promising therapeutic approach for cancer immunotherapy.


Molecular Pharmaceutics | 2015

pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy

Yu-Juan Gao; Yi Wang; Zeng-Ying Qiao; Gang Fan; Sheng-Lin Qiao; Ruo-Xin Zhang; Lei Wang; Hao Wang

Various nanomaterials have been demonstrated as autophagy inducers owing to their endocytosis cell uptake pathway and impairment of lysosomes. pH-dependent nanomaterials as drug delivery systems that are capable of dissociating in weakly acidic lysosomal environment (pH 4-5) and consequently releasing the payloads into the cytoplasm have been paid extensive attention, but their autophagy-modulating effects are less reported so far. In this study, we report pH-sensitive micelle-like nanoparticles (NPs) that self-assembled from poly(β-amino ester)s to induce cell autophagy. By encapsulation of gold(I) compounds (Au(I)) into hydrophobic domains of NPs, the resultant Au(I)-loaded NPs (Au(I)⊂NPs) shows synergistic cancer cell killing performance. The Au(I)⊂NPs enter cells through endocytosis pathway and accumulate into acidic lysosomes. Subsequently, the protonation of tertiary amines of poly(β-amino ester)s triggers the dissociation of micelles, damages the lysosomes, and blocks formation of autolysosomes from fusion of lysosomes with autophagosomes. In addition, Au(I) preferentially inhibits thioredoxin reductase (TrxR) in MCF-7 human breast cancer cells that directly links to up-regulate reactive oxygen species (ROS) and consequently induce autophagy and apoptosis. The blockade of autophagy leads to excessive depletion of cellular organelles and essential proteins and ultimately results in cell death. Therefore, pH-sensitive polymeric nanoparticles with gold(I) compound payloads can synergistically induce cancer cell death through regulation of autophagy. Identification of the pH-sensitive nanomaterials for synergistically inducing cell death through regulation autophagy may open a new avenue for cancer therapy.


ACS Nano | 2017

An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy

Sheng-Lin Qiao; Yi Wang; Ruo-Xin Zhang; Hong-Wei An; Yang Ma; R.P. Yeshan J. Rajapaksha; Zeng-Ying Qiao; Lei Wang; Hao Wang

Autophagy plays a crucial role in the metabolic process. So far, conventional methods are incapable of rapid, precise, and real-time monitoring of autophagy in living objects. Herein, we describe an in situ intracellular self-assembly strategy for quantitative and temporal determination of autophagy in living objectives. The intelligent building blocks (DPBP) are composed by a bulky dendrimer as a carrier, a bis(pyrene) derivative (BP) as a signal molecule, and a peptide linker as a responsive unit that can be cleaved by an autophagy-specific enzyme, i.e., ATG4B. DPBP maintains the quenched fluorescence with monomeric BP. However, the responsive peptide is specifically tailored upon activation of autophagy, resulting in self-aggregation of BP residues which emit a 30-fold enhanced fluorescence. By measuring the intensity of fluorescent signal, we are able to quantitatively evaluate the autophagic level. In comparison with traditional techniques, such as TEM, Western blot, and GFP-LC3, the reliability and accuracy of this method are finally validated. We believe this in situ intracellular self-assembly strategy provides a rapid, effective, real-time, and quantitative method for monitoring autophagy in living objects, and it will be a useful tool for autophagy-related fundamental and clinical research.


Advanced Materials | 2016

A General Strategy for Facile Synthesis and In Situ Screening of Self-Assembled Polymer-Peptide Nanomaterials.

Zeng-Ying Qiao; Wenjia Lai; Chun-Yuan Hou; Yi Wang; Sheng-Lin Qiao; Di Zhang; Qiaojun Fang; Hao Wang

A universal strategy for efficient, mild, and purification-free synthesis and in situ screening of functional polymer-peptide nanomaterials is described. More than 1000 polymer-peptide conjugates (PPCs) with various chemical structures, compositions, and therapeutic efficacy are created. According to this strategy, the structure-function relationship of the PPCs is revealed, and the antitumor efficacies of the top performing PPCs are evaluated in vivo.


Nanotechnology | 2015

Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

Shi-Jie Liu; Sheng-Lin Qiao; Li-Li Li; Guo-Bin Qi; Zeng-Ying Qiao; Hao Wang; Chen Shao

Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml(-1), compared with the free Ce6 value of 29.85 μg ml(-1). Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.


Nature Communications | 2017

Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions

Li-Li Li; Sheng-Lin Qiao; Wei-Jiao Liu; Yang Ma; Dong Wan; Jie Pan; Hao Wang

Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions.


Nanotechnology | 2015

pH-Sensitive polymer assisted self- aggregation of bis(pyrene) in living cells in situ with turn-on fluorescence

Zhong-Yu Duan; Yu-Juan Gao; Zeng-Ying Qiao; Sheng-Lin Qiao; Yongmei Wang; Chun-Yuan Hou; Lei Wang; Hao Wang

Supramolecular self-assemblies with various nanostructures in organic and aqueous solutions have been prepared with desired functions. However, in situ construction of self-assembled superstructures in physiological conditions to achieve expected biological functions remains a challenge. Here, we report a supramolecular system to realize the in situ formation of nanoaggregates in living cells. The bis(pyrene) monomers were dispersed inside of hydrophobic domains of pH-sensitive polymeric micelles and delivered to the lysosomes of cells. In the acidic lysosomes, the bis(pyrene) monomers were released and self-aggregated with turn-on fluorescence. We envision this strategy for in situ construction of supramolecular nanostructures in living cells will pave the way for molecular diagnostics in the future.

Collaboration


Dive into the Sheng-Lin Qiao's collaboration.

Top Co-Authors

Avatar

Yi Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Hong-Wei An

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chun-Yuan Hou

Hebei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Guo-Bin Qi

Wuhan Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

Center for Excellence in Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Xi Zhao

Hebei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yu-Juan Gao

Center for Excellence in Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge