Sheng Wei Chi
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sheng Wei Chi.
International Journal of Fracture | 2014
Brad Lee Boyce; Sharlotte Kramer; H. E. Fang; T. E. Cordova; Michael K. Neilsen; Kristin Dion; Amy Kathleen Kaczmarowski; E. Karasz; L. Xue; A. J. Gross; Ali Ghahremaninezhad; K. Ravi-Chandar; S.-P. Lin; Sheng Wei Chi; Jiun-Shyan Chen; E. Yreux; M. Rüter; Dong Qian; Z. Zhou; Sagar D. Bhamare; D. T. O'Connor; Shan Tang; K. Elkhodary; J. Zhao; Jacob D. Hochhalter; Albert Cerrone; Anthony R. Ingraffea; Paul A. Wawrzynek; B.J. Carter; J. M. Emery
Existing and emerging methods in computational mechanics are rarely validated against problems with an unknown outcome. For this reason, Sandia National Laboratories, in partnership with US National Science Foundation and Naval Surface Warfare Center Carderock Division, launched a computational challenge in mid-summer, 2012. Researchers and engineers were invited to predict crack initiation and propagation in a simple but novel geometry fabricated from a common off-the-shelf commercial engineering alloy. The goal of this international Sandia Fracture Challenge was to benchmark the capabilities for the prediction of deformation and damage evolution associated with ductile tearing in structural metals, including physics models, computational methods, and numerical implementations currently available in the computational fracture community. Thirteen teams participated, reporting blind predictions for the outcome of the Challenge. The simulations and experiments were performed independently and kept confidential. The methods for fracture prediction taken by the thirteen teams ranged from very simple engineering calculations to complicated multiscale simulations. The wide variation in modeling results showed a striking lack of consistency across research groups in addressing problems of ductile fracture. While some methods were more successful than others, it is clear that the problem of ductile fracture prediction continues to be challenging. Specific areas of deficiency have been identified through this effort. Also, the effort has underscored the need for additional blind prediction-based assessments.
Journal of Biomechanics | 2010
Sheng Wei Chi; John A. Hodgson; Jiun-Shyan Chen; V. Reggie Edgerton; David D. Shin; Ronald A. Roiz; Shantanu Sinha
A finite element model was used to investigate the counter-intuitive experimental observation that some regions of the aponeuroses of a loaded and contracting muscle may shorten rather than undergo an expected lengthening. The model confirms the experimental findings and suggests that pennation angle plays a significant role in determining whether regions of the aponeuroses stretch or shorten. A smaller pennation angles (25 degrees ) was accompanied by aponeurosis lengthening whereas a larger pennation angle (47 degrees ) was accompanied by mixed strain effects depending upon location along the length of the aponeurosis. This can be explained by the Poisson effect during muscle contraction and a Mohrs circle analogy. Constant volume constraint requires that fiber cross sectional dimensions increase when a fiber shortens. The opposing influences of these two strains upon the aponeurosis combine in proportion to the pennation angle. Lower pennation angles emphasize the influence of fiber shortening upon the aponeurosis and thus favor aponeurosis compression, whereas higher pennation angles increase the influence of cross sectional changes and therefore favor aponeurosis stretch. The distance separating the aponeuroses was also found to depend upon pennation angle during simulated contractions. Smaller pennation angles favored increased aponeurosis separation larger pennation angles favored decreased separation. These findings caution that measures of the mechanical properties of aponeuroses in intact muscle may be affected by contributions from adjacent muscle fibers and that the influence of muscle fibers on aponeurosis strain will depend upon the fiber pennation angle.
Springer Netherlands | 2014
B. L Boyce; S. L B Kramer; H. E. Fang; T. E. Cordova; M. K Neilsen; K. Dion; A. K Kaczmarowski; E. Karasz; L. Xue; A. J Gross; Ali Ghahremaninezhad; K. Ravi-Chandar; S.-P. Lin; Sheng Wei Chi; Jiun-Shyan Chen; E. Yreux; M. Rüter; D. Qian; Z. Zhou; S. Bhamare; D. T O’Connor; Shan Tang; K. Elkhodary; J. Zhao; Jacob D. Hochhalter; Albert Cerrone; Anthony R. Ingraffea; Paul A. Wawrzynek; B.J. Carter; J. M. Emery
Existing and emerging methods in computational mechanics are rarely validated against problems with an unknown outcome. For this reason, Sandia National Laboratories, in partnership with US National Science Foundation and Naval Surface Warfare Center Carderock Division, launched a computational challenge in mid-summer, 2012. Researchers and engineers were invited to predict crack initiation and propagation in a simple but novel geometry fabricated from a common off-the-shelf commercial engineering alloy. The goal of this international Sandia Fracture Challenge was to benchmark the capabilities for the prediction of deformation and damage evolution associated with ductile tearing in structural metals, including physics models, computational methods, and numerical implementations currently available in the computational fracture community. Thirteen teams participated, reporting blind predictions for the outcome of the Challenge. The simulations and experiments were performed independently and kept confidential. The methods for fracture prediction taken by the thirteen teams ranged from very simple engineering calculations to complicated multiscale simulations. The wide variation in modeling results showed a striking lack of consistency across research groups in addressing problems of ductile fracture. While some methods were more successful than others, it is clear that the problem of ductile fracture prediction continues to be challenging. Specific areas of deficiency have been identified through this effort. Also, the effort has underscored the need for additional blind prediction-based assessments.
Journal of Engineering Mechanics-asce | 2017
Jiun-Shyan Chen; Michael Hillman; Sheng Wei Chi
AbstractIn the past two decades, meshfree methods have emerged into a new class of computational methods with considerable success. In addition, a significant amount of progress has been made in ad...
Journal of The Mechanical Behavior of Biomedical Materials | 2012
John A. Hodgson; Sheng Wei Chi; Judy P. Yang; Jiun-Shyan Chen; V. R. Edgerton; Shantanu Sinha
The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a three-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders.
International Journal of Fracture | 2017
Shixue Liang; Jiun-Shyan Chen; Jie Li; Shih Po Lin; Sheng Wei Chi; Michael Hillman; Michael J. Roth; William F. Heard
Concrete is typically treated as a homogeneous material at the continuum scale. However, the randomness in micro-structures has profound influence on its mechanical behavior. In this work, the relationship of the statistical variation of macro-scale concrete properties and micro-scale statistical variations is investigated. Micro-structures from CT scans are used to quantify the stochastic properties of a high strength concrete at the micro-scale. Crack propagation is then simulated in representative micro-structures subjected to tensile and shear tractions, and damage evolution functions in the homogenized continuum are extracted using a Helmholtz free energy correlation. A generalized density evolution equation is employed to represent the statistical variations in the concrete micro-structures as well as in the associated damage evolution functions of the continuum. This study quantifies how the statistical variations in void size and distribution in the concrete microstructure affect the statistical variation of material parameters representing tensile and shear damage evolutions at the continuum scale. The simulation results show (1) the random variation decreases from micro-scale to macro-scale, and (2) the coefficient of variation in shear damage is larger than that in the tensile damage.
Springer Series in Geomechanics and Geoengineering | 2011
Jiun-Shyan Chen; Pai-Chen Guan; Sheng Wei Chi; Xiaodan Ren; Michael J. Roth; Thomas Slawson; M. Alsaleh
Damage processes in geomaterials typically involve moving strong and weak discontinuities, multiscale phenomena, excessive deformation, and multi-body contact that cannot be effectively modeled by a single-scale Lagrangian finite element formulation. In this work, we introduce a semi-Lagrangian Reproducing Kernel Particle Method (RKPM) which allows flexible adjustment of locality, continuity, polynomial reproducibility, and h- and p-adaptivity as the computational framework for modeling complex damage processes in geomaterials. Under this work, we consider damage in the continua as the homogenization of micro-cracks in the microstructures. Bridging between the cracked microstructure and the damaged continuum is facilitated by the equivalence of Helmholtz free energy between the two scales. As such, damage in the continua, represented by the degradation of continua, can be characterized from the Helmholtz free energy. Under this framework, a unified approach for numerical characterization of a class of damage evolution functions has been proposed. An implicit gradient operator is embedded in the reproduction kernel approximation as a regularization of ill-posedness in strain localization. Demonstration problems include numerical simulation of fragment-impact of concrete materials.
International Journal of Impact Engineering | 2011
Pai-Chen Guan; Sheng Wei Chi; Jiun-Shyan Chen; Thomas Slawson; Michael J. Roth
International Journal for Numerical Methods in Engineering | 2009
Jiun-Shyan Chen; Lihua Wang; Hsin-Yun Hu; Sheng Wei Chi
Computational particle mechanics | 2014
Michael Hillman; Jiun-Shyan Chen; Sheng Wei Chi