Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheng Wen is active.

Publication


Featured researches published by Sheng Wen.


PLOS ONE | 2013

Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells.

Yanhong Gao; Enyi Huang; Hongmei Zhang; Jinhua Wang; Ningning Wu; Xian Chen; Ning Wang; Sheng Wen; Guoxin Nan; Fang Deng; Zhan Liao; Di Wu; Zhang Bq; Junhui Zhang; Rex C. Haydon; Hue H. Luu; Lewis L. Shi; Tong-Chuan He

Osteogenic differentiation from mesenchymal progenitor cells (MPCs) are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER) signaling by estradiol (E2) or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.


PLOS ONE | 2014

Adenovirus-Mediated Gene Transfer in Mesenchymal Stem Cells Can Be Significantly Enhanced by the Cationic Polymer Polybrene

Chen Zhao; Ningning Wu; Fang Deng; Hongmei Zhang; Ning Wang; Wenwen Zhang; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Guolin Zhou; Hue H. Luu; Rex C. Haydon; Weike Si; Tong-Chuan He

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 μg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 μg/ml and 2 μg/ml, respectively. FACS analysis indicates that Polybrene (at 4 μg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 μg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 μg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


PLOS ONE | 2014

Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

Ning Wang; Hongyu Zhang; Bing-Qiang Zhang; Wei Liu; Zhonglin Zhang; Min Qiao; Hongmei Zhang; Fang Deng; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Zhan Liao; Qian Zhang; Zhengjian Yan; Liangjun Yin; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Houjie Liang; Tong-Chuan He

Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.


Stem Cells and Development | 2014

Bone Morphogenetic Protein-9 Effectively Induces Osteo/Odontoblastic Differentiation of the Reversibly Immortalized Stem Cells of Dental Apical Papilla

Jinhua Wang; Hongmei Zhang; Wenwen Zhang; Enyi Huang; Ning Wang; Ningning Wu; Sheng Wen; Xian Chen; Zhan Liao; Fang Deng; Liangjun Yin; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Feng Deng

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


PLOS ONE | 2014

The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

Ning Wang; Wenwen Zhang; Jing Cui; Hongmei Zhang; Xiang Chen; Ruidong Li; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Fang Deng; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Jixing Ye; Youlin Deng; Zhongliang Wang; Min Qiao; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Houjie Liang; Tong-Chuan He

Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.


Gene Therapy | 2014

Overexpression of Ad5 precursor terminal protein accelerates recombinant adenovirus packaging and amplification in HEK-293 packaging cells

Ningning Wu; Hongbin Zhang; Fang Deng; Ruifang Li; Wenwen Zhang; Xian Chen; Sheng Wen; Ning Wang; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Ke Yang; Hue H. Luu; Rex C. Haydon; Tong-Chuan He

Recombinant adenoviruses are one of the most common vehicles for efficient in vitro and in vivo gene deliveries. Here, we investigate whether exogenous precursor terminal protein (pTP) expression in 293 cells improves the efficiency of adenovirus packaging and amplification. We used a piggyBac transposon-based vector and engineered a stable 293 line that expresses high level of Ad5 pTP, designated as 293pTP. Using the AdBMP6-GLuc that expresses green fluorescent protein (GFP), BMP6 and Gaussia luciferase, we found that the infectivity of AdBMP6-GLuc viral samples packaged in 293pTP cells was titrated up to 19.3 times higher than that packaged in parental 293 cells. AdBMP6-GLuc viral samples packaged in 293pTP cells exhibited significantly higher transduction efficiency in 143B and immortalized mouse embryonic fibroblast (iMEF) cells, as assessed by fluorescence-activated cell sorting analysis of GFP-positive cells, the luciferase activity assay and BMP6-induced osteogenic marker alkaline phosphatase activities in iMEFs. When adenovirus amplification efficiency was analyzed, we found that 293pTP cells infected with AdBMP6-GLuc yielded up to 12.6 times higher titer than that in parental 293 cells, especially at lower multiplicities of infection. These results strongly suggest that exogenous pTP expression may accelerate the packaging and amplification of recombinant adenoviruses. Thus, the engineered 293pTP cells should be a superior packaging line for efficient adenovirus production.


Current Cancer Drug Targets | 2014

Targeting BMP9-Promoted Human Osteosarcoma Growth by Inactivation of Notch Signaling

Ruidong Li; Wenwen Zhang; Jing Cui; Wei Shui; Liangjun Yin; Yang Wang; Hongyu Zhang; Ning Wang; Ningning Wu; Guoxin Nan; Xian Chen; Sheng Wen; Fang Deng; Hongmei Zhang; Guolin Zhou; Zhan Liao; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Zhong-Liang Deng

Osteosarcoma (OS) is the most common primary malignancy of bone and is usually associated with poor prognosis due to its high incidence of metastasis and chemoresistance. Molecular pathogenesis of OS is poorly understood. We previously showed that OS cells are refractory to BMP9-induced osteogenesis and respond favorably to proliferation and tumor growth. Here we investigate if Notch signaling mediates the BMP9-promoted cell proliferation and tumor growth of human osteosarcoma (OS). We find that the expression of Notch1, Notch2, Notch3, DLL1, JAG1 and JAG2 is readily detected in most of the tested OS cell lines. BMP9-promoted OS cell proliferation, migration, and cell cycle S/G2 progression are effectively inhibited by a dominant-negative mutant of Notch1 (dnNotch1) or the γ-secretase inhibitor Compound E (ComE). Furthermore, BMP9-promoted tumor growth and osteolytic lesions in vivo are significantly inhibited by dnNotch1. BMP9 up-regulates the expression of Notch1, Notch3, DLL1, and JAG1 in OS cells. Accordingly, BMP9 stimulation induces a nuclear accumulation of NICD, which is blocked by ComE. Our results demonstrate that BMP9-promoted OS proliferation and tumor growth is at least in part mediated by Notch signaling, suggesting that osteogenic BMPs may function as upstream regulators of Notch signaling in OS tumorigenesis. Thus, pharmacologic intervention of Notch signaling may be explored as a new therapeutic strategy for human OS tumors.


Cellular Physiology and Biochemistry | 2013

The E-F Hand Calcium-Binding Protein S100A4 Regulates the Proliferation, Survival and Differentiation Potential of Human Osteosarcoma Cells

Xian Chen; Gaurav Luther; Wenwen Zhang; Guoxin Nan; Eric R. Wagner; Zhan Liao; Ningning Wu; Hongmei Zhang; Ning Wang; Sheng Wen; Yunfeng He; Fang Deng; Junhui Zhang; Di Wu; Zhang Bq; Rex C. Haydon; Lan Zhou; Hue H. Luu; Tong-Chuan He

Background/Aims: Osteosarcoma (OS) is the most common primary bone malignancy in children and young adults. Molecular mechanisms underlying the pathogenesis of OS remain to be fully understood. Several members of the E-F hand calcium-binding S100 protein family are differentially expressed in human cancers. We previously showed that S100A6 is highly expressed in OS tumors. In this study, we investigated the role of S100A4 in regulating OS proliferation and osteogenic differentiation. Methods/Results: Endogenous S100 expression was examined by semi-quantitative PCR in human OS lines. Adenoviral vector-mediated overexpression and RNAi knockdown of S100A4 were used to assess S100A4s effects on cell proliferation, migration and invasion and osteogenic differentiation. Apoptosis was assessed by using anti-caspase-3 immunostaining and flow cytometry with annexin V staining. Early osteogenic marker alkaline phosphatase (ALP) and late markers osteocalcin (OCN) and osteopontin (OPN) were assessed to determine the status of osteogenic differentiation. We found that S100A4 was elevated in metastatic MG63.2 cells. S100A4 knockdown inhibited cell proliferation, prolonged cell doubling time, and induced significant apoptosis. Silencing S100A4 expression in OS cells delayed cell wounding closure and diminished the numbers of migrated OS cells in transwell invasion assay. Furthermore, silencing S100A4 expression stimulated ALP activity, as well as late markers OPN and OCN, in both OS cells and mesenchymal stem cells. Conclusion: Our results strongly suggest that S100A4 may promote OS tumor growth by regulating the cell cycle, reducing apoptosis, and inhibiting osteogenic differentiation. Thus, S100A4 may serve as a marker for tumorigenic potential, as well as a therapeutic target.


PLOS ONE | 2014

Characterization of constitutive promoters for piggyBac transposon-mediated stable transgene expression in mesenchymal stem cells (MSCs).

Sheng Wen; Hongmei Zhang; Yasha Li; Ning Wang; Wenwen Zhang; Ke Yang; Ningning Wu; Xian Chen; Fang Deng; Zhan Liao; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Guolin Zhou; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Tong-Chuan He; Guanghui Wei

Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.


Cellular Physiology and Biochemistry | 2013

Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

Yuhan Kong; Hongyu Zhang; Xian Chen; Wenwen Zhang; Chen Zhao; Ning Wang; Ningning Wu; Yunfeng He; Guoxin Nan; Hongmei Zhang; Sheng Wen; Fang Deng; Zhan Liao; Di Wu; Junhui Zhang; Xinyue Qin; Rex C. Haydon; Hue H. Luu; Tong-Chuan He; Lan Zhou

Background and Aims: Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results: We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP). In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion: Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.

Collaboration


Dive into the Sheng Wen's collaboration.

Top Co-Authors

Avatar

Fang Deng

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Wang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongmei Zhang

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xian Chen

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Junhui Zhang

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhan Liao

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge