Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengcai Liao is active.

Publication


Featured researches published by Shengcai Liao.


computer vision and pattern recognition | 2015

Person re-identification by Local Maximal Occurrence representation and metric learning

Shengcai Liao; Yang Hu; Xiangyu Zhu; Stan Z. Li

Person re-identification is an important technique towards automatic search of a persons presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

Illumination Invariant Face Recognition Using Near-Infrared Images

Stan Z. Li; Rufeng Chu; Shengcai Liao; Lun Zhang

Most current face recognition systems are designed for indoor, cooperative-user applications. However, even in thus-constrained applications, most existing systems, academic and commercial, are compromised in accuracy by changes in environmental illumination. In this paper, we present a novel solution for illumination invariant face recognition for indoor, cooperative-user applications. First, we present an active near infrared (NIR) imaging system that is able to produce face images of good condition regardless of visible lights in the environment. Second, we show that the resulting face images encode intrinsic information of the face, subject only to a monotonic transform in the gray tone; based on this, we use local binary pattern (LBP) features to compensate for the monotonic transform, thus deriving an illumination invariant face representation. Then, we present methods for face recognition using NIR images; statistical learning algorithms are used to extract most discriminative features from a large pool of invariant LBP features and construct a highly accurate face matching engine. Finally, we present a system that is able to achieve accurate and fast face recognition in practice, in which a method is provided to deal with specular reflections of active NIR lights on eyeglasses, a critical issue in active NIR image-based face recognition. Extensive, comparative results are provided to evaluate the imaging hardware, the face and eye detection algorithms, and the face recognition algorithms and systems, with respect to various factors, including illumination, eyeglasses, time lapse, and ethnic groups


international conference on biometrics | 2007

Learning multi-scale block local binary patterns for face recognition

Shengcai Liao; Xiangxin Zhu; Zhen Lei; Lun Zhang; Stan Z. Li

In this paper, we propose a novel representation, calledMultiscale Block Local Binary Pattern (MB-LBP), and apply it to face recognition. The Local Binary Pattern (LBP) has been proved to be effective for image representation, but it is too local to be robust. In MB-LBP, the computation is done based on average values of block subregions, instead of individual pixels. In this way, MB-LBP code presents several advantages: (1) It ismore robust than LBP; (2) it encodes not only microstructures but also macrostructures of image patterns, and hence provides a more complete image representation than the basic LBP operator; and (3) MB-LBP can be computed very efficiently using integral images. Furthermore, in order to reflect the uniform appearance of MB-LBP, we redefine the uniform patterns via statistical analysis. Finally, AdaBoost learning is applied to select most effective uniform MB-LBP features and construct face classifiers. Experiments on Face Recognition Grand Challenge (FRGC) ver2.0 database show that the proposed MB-LBP method significantly outperforms other LBP based face recognition algorithms.


european conference on computer vision | 2016

The Visual Object Tracking VOT2014 Challenge Results

Matej Kristan; Roman P. Pflugfelder; Aleš Leonardis; Jiri Matas; Luka Cehovin; Georg Nebehay; Tomas Vojir; Gustavo Fernández; Alan Lukezic; Aleksandar Dimitriev; Alfredo Petrosino; Amir Saffari; Bo Li; Bohyung Han; CherKeng Heng; Christophe Garcia; Dominik Pangersic; Gustav Häger; Fahad Shahbaz Khan; Franci Oven; Horst Bischof; Hyeonseob Nam; Jianke Zhu; Jijia Li; Jin Young Choi; Jin-Woo Choi; João F. Henriques; Joost van de Weijer; Jorge Batista; Karel Lebeda

Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would allow objective comparison of different tracking methods. To address this issue, the Visual Object Tracking (VOT) workshop was organized in conjunction with ICCV2013. Researchers from academia as well as industry were invited to participate in the first VOT2013 challenge which aimed at single-object visual trackers that do not apply pre-learned models of object appearance (model-free). Presented here is the VOT2013 benchmark dataset for evaluation of single-object visual trackers as well as the results obtained by the trackers competing in the challenge. In contrast to related attempts in tracker benchmarking, the dataset is labeled per-frame by visual attributes that indicate occlusion, illumination change, motion change, size change and camera motion, offering a more systematic comparison of the trackers. Furthermore, we have designed an automated system for performing and evaluating the experiments. We present the evaluation protocol of the VOT2013 challenge and the results of a comparison of 27 trackers on the benchmark dataset. The dataset, the evaluation tools and the tracker rankings are publicly available from the challenge website (http://votchallenge.net).


computer vision and pattern recognition | 2010

Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes

Shengcai Liao; Guoying Zhao; Vili Kellokumpu; Matti Pietikäinen; Stan Z. Li

Background modeling plays an important role in video surveillance, yet in complex scenes it is still a challenging problem. Among many difficulties, problems caused by illumination variations and dynamic backgrounds are the key aspects. In this work, we develop an efficient background subtraction framework to tackle these problems. First, we propose a scale invariant local ternary pattern operator, and show that it is effective for handling illumination variations, especially for moving soft shadows. Second, we propose a pattern kernel density estimation technique to effectively model the probability distribution of local patterns in the pixel process, which utilizes only one single LBP-like pattern instead of histogram as feature. Third, we develop multimodal background models with the above techniques and a multiscale fusion scheme for handling complex dynamic backgrounds. Exhaustive experimental evaluations on complex scenes show that the proposed method is fast and effective, achieving more than 10% improvement in accuracy compared over existing state-of-the-art algorithms.


european conference on computer vision | 2014

Salient Color Names for Person Re-identification

Yang Yang; Jimei Yang; Junjie Yan; Shengcai Liao; Dong Yi; Stan Z. Li

Color naming, which relates colors with color names, can help people with a semantic analysis of images in many computer vision applications. In this paper, we propose a novel salient color names based color descriptor (SCNCD) to describe colors. SCNCD utilizes salient color names to guarantee that a higher probability will be assigned to the color name which is nearer to the color. Based on SCNCD, color distributions over color names in different color spaces are then obtained and fused to generate a feature representation. Moreover, the effect of background information is employed and analyzed for person re-identification. With a simple metric learning method, the proposed approach outperforms the state-of-the-art performance (without user’s feedback optimization) on two challenging datasets (VIPeR and PRID 450S). More importantly, the proposed feature can be obtained very fast if we compute SCNCD of each color in advance.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013

Partial Face Recognition: Alignment-Free Approach

Shengcai Liao; Anil K. Jain; Stan Z. Li

Many approaches have been developed for holistic face recognition with impressive performance. However, few studies have addressed the question of how to recognize an arbitrary image patch of a holistic face. In this paper we address this problem of partial face recognition. Partial faces frequently appear in unconstrained image capture environments, particularly when faces are captured by surveillance cameras or handheld devices (e.g. mobile phones). The proposed approach adopts a variable-size description which represents each face with a set of keypoint descriptors. In this way, we argue that a probe face image, holistic or partial, can be sparsely represented by a large dictionary of gallery descriptors. The proposed method is alignment free and we address large-scale face recognition problems by a fast filtering strategy. Experimental results on three public domain face databases (FRGCv2.0, AR, and LFW) show that the proposed method achieves promising results in recognizing both holistic and partial faces.


IEEE Transactions on Image Processing | 2011

Face Recognition by Exploring Information Jointly in Space, Scale and Orientation

Zhen Lei; Shengcai Liao; Matti Pietikäinen; Stan Z. Li

Information jointly contained in image space, scale and orientation domains can provide rich important clues not seen in either individual of these domains. The position, spatial frequency and orientation selectivity properties are believed to have an important role in visual perception. This paper proposes a novel face representation and recognition approach by exploring information jointly in image space, scale and orientation domains. Specifically, the face image is first decomposed into different scale and orientation responses by convolving multiscale and multi-orientation Gabor filters. Second, local binary pattern analysis is used to describe the neighboring relationship not only in image space, but also in different scale and orientation responses. This way, information from different domains is explored to give a good face representation for recognition. Discriminant classification is then performed based upon weighted histogram intersection or conditional mutual information with linear discriminant analysis techniques. Extensive experimental results on FERET, AR, and FRGC ver 2.0 databases show the significant advantages of the proposed method over the existing ones.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

A Fast and Accurate Unconstrained Face Detector

Shengcai Liao; Anil K. Jain; Stan Z. Li

We propose a method to address challenges in unconstrained face detection, such as arbitrary pose variations and occlusions. First, a new image feature called Normalized Pixel Difference (NPD) is proposed. NPD feature is computed as the difference to sum ratio between two pixel values, inspired by the Weber Fraction in experimental psychology. The new feature is scale invariant, bounded, and is able to reconstruct the original image. Second, we propose a deep quadratic tree to learn the optimal subset of NPD features and their combinations, so that complex face manifolds can be partitioned by the learned rules. This way, only a single soft-cascade classifier is needed to handle unconstrained face detection. Furthermore, we show that the NPD features can be efficiently obtained from a look up table, and the detection template can be easily scaled, making the proposed face detector very fast. Experimental results on three public face datasets (FDDB, GENKI, and CMU-MIT) show that the proposed method achieves state-of-the-art performance in detecting unconstrained faces with arbitrary pose variations and occlusions in cluttered scenes.


computer vision and pattern recognition | 2013

Robust Multi-resolution Pedestrian Detection in Traffic Scenes

Junjie Yan; Xucong Zhang; Zhen Lei; Shengcai Liao; Stan Z. Li

The serious performance decline with decreasing resolution is the major bottleneck for current pedestrian detection techniques. In this paper, we take pedestrian detection in different resolutions as different but related problems, and propose a Multi-Task model to jointly consider their commonness and differences. The model contains resolution aware transformations to map pedestrians in different resolutions to a common space, where a shared detector is constructed to distinguish pedestrians from background. For model learning, we present a coordinate descent procedure to learn the resolution aware transformations and deformable part model (DPM) based detector iteratively. In traffic scenes, there are many false positives located around vehicles, therefore, we further build a context model to suppress them according to the pedestrian-vehicle relationship. The context model can be learned automatically even when the vehicle annotations are not available. Our method reduces the mean miss rate to 60% for pedestrians taller than 30 pixels on the Caltech Pedestrian Benchmark, which noticeably outperforms previous state-of-the-art (71%).

Collaboration


Dive into the Shengcai Liao's collaboration.

Top Co-Authors

Avatar

Stan Z. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Lei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dong Yi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cuicui Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiming Xiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunhong Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ran He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rufeng Chu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge