Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengdao Shan is active.

Publication


Featured researches published by Shengdao Shan.


RSC Advances | 2016

Advanced treatment of biologically pretreated coal gasification wastewater using a novel expansive flow biological intermittent aerated filter process with a ceramic filler from reused coal fly ash

Haifeng Zhuang; Shengdao Shan; Chengran Fang; Xiaoli Yuan

A novel expansive flow biological intermittent aerated filter (BIAF) process was employed for the advanced treatment of real biologically pretreated coal gasification wastewater (CGW) which had poor biodegradability and a low carbon/nitrogen ratio. The results indicated that the expansive flow BIAF with reused coal fly ash and clay as a ceramic filler exhibited efficient performance for pollutant removal. The effluent concentrations of COD, total phenols, NH4+-N, and total nitrogen (TN), were 39.5, 4.8, 6.3, and 18.8 mg L−1 respectively, with a turbidity of 3 NTU and chromaticity of 26 degrees at the optimal hydraulic retention time of 9 h, meeting the standards for the reuse of water. Moreover, most toxic and refractory pollutants were also eliminated. Meanwhile, intermittent aeration not only significantly increased nitrate and nitrite reductases, but also successfully improved simultaneous nitrification and denitrification activity which facilitated TN removal. The results of high-throughput sequencing represented that the biological process included 28 major bacteria which were affiliated to 7 phyla, where Thermomonas, Methylococcus and Comamona were the most important functional genera. After stable operation for 192 h, the optimal backwashing time was 6 min when the air and water intensities were 8 and 2.5 L (s m2)−1, respectively. These results demonstrated that the expansive flow BIAF process, with the advantages of efficient, economical and sustainable development, was beneficial to engineering applications.


Bioresource Technology | 2016

Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor

Haifeng Zhuang; Xiaoting Hong; Hongjun Han; Shengdao Shan

A lab-scale study was investigated to evaluate the effect of pure oxygen fine bubbles on membrane bioreactor (O2-MBR) performance of treating coal gasification wastewater. Compared with conventional MBR using aeration source of air (CMBR), the removal efficiencies of COD and total phenols increased by 28% and 36%, and the organic compositions of treated effluent represented significant difference that was mainly attributed to the controlled the foam expansion and enhanced the enzymatic activities in O2-MBR. Moreover, membrane fouling mitigation was observed in O2-MBR, probably owing to the less EPS amount and larger PSD. It was notable that the pure oxygen with fine bubbles promoted marked evolution of bacterial community from CMBR to O2-MBR, particularly, the bacterial community richness and diversity in O2-MBR was lower than CMBR, and the genera Phycisphaera, Comamonas, Thauera and Ohtaekwangia composed the top four most relative abundance genera in O2-MBR, giving the total relative abundance of 26.7%.


RSC Advances | 2016

Recycling rice straw derived, activated carbon supported, nanoscaled Fe3O4 as a highly efficient catalyst for Fenton oxidation of real coal gasification wastewater

Haifeng Zhuang; Xiaoting Hong; Shengdao Shan; Xiaoli Yuan

Recycled rice straw was converted into an activated carbon support for nanoscaled Fe3O4. The resulting catalyst (Fe3O4MNPs/RSAC) was then evaluated for its effectiveness in the treatment of real coal gasification wastewater (CGW), which contained strong toxins and refractory pollutants that were poorly biodegradable. The results indicated that Fenton oxidation with the prepared catalyst was a highly efficient means of treatment for CGW over a wide pH range: the corresponding COD, cyanide and total phenols (TPh) removal efficiencies were 55.5, 46.5 and 85.5%, respectively. The treated wastewater was more biodegradable and less toxic, which aided in subsequent processing. The efficiency enhancement was attributed to the generation of more hydroxyl radicals and a possible reaction mechanism was proposed. Furthermore, Fe3O4MNPs/RSAC showed superior stability over ten successive runs. Moreover, heterogeneous Fenton oxidation by Fe3O4MNPs/RSAC also enhanced the aerobic biodegradation of CGW. Overall, 92.9% of COD and 98.5% of TPh were removed via the integration of Fenton oxidation and biological processing. Thus, the catalysis of Fenton oxidation by Fe3O4MNPs/RSAC was efficient, cost-effective and sustainable with a beneficial engineering application in the treatment of refractory wastewater, and a new and sustainable use for waste rice straw.


Bioresource Technology | 2018

Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution

Yin Li; Arun Meas; Shengdao Shan; Ruiqin Yang; Xikun Gai; Hongpeng Wang; Nyamkhand Tsend

A series of bamboo hydrochars were prepared through acid-assisted and two-stage hydrothermal carbonization, characterized and evaluated for the adsorption of Congo red and 2-naphthol in aqueous solutions. The hydrochars have rough surfaces with BET surface areas of 6.77-57.74 m2/g and oxygen-rich functional groups. The additives in feed water revealed critical influences on the physical-chemical and adsorption properties of the hydrochars. The hydrochars can adsorb the two organics effectively, the highest adsorption capacities for Congo red and 2-naphthol are 90.51 and 72.93 mg/g, respectively, at 0.1 mg/mL and 298 K. The adsorption of the two organics on the selected hydrochars is a spontaneous and mainly physical adsorption process. 95% and 92% of the adsorption equilibrium could be accomplished in one hour for Congo red and 2-naphthol on the selected hydrochars, respectively. This study provides references for the production and application of hydrochars as efficient adsorbents in wastewater treatment.


Waste Management | 2018

Role of phosphoric acid in the bioavailability of potentially toxic elements in hydrochars produced by hydrothermal carbonisation of sewage sludge

Yan Zhang; Qingde Deng; Minyan Wang; Jin Zhang; Yu Bon Man; Shengdao Shan; Shengchun Wu; Peng Liang; Yucheng Cao; Chengfang Song; Linping Luo; Lin Lin; Peter Christie; Ming Hung Wong

The effect of phosphoric acid addition to the feed-water on the speciation and transformation behaviour of potentially toxic elements (PTEs) in the hydrothermal carbonisation (HTC) of sewage sludge was explored. Over 70% of each of the PTEs (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) was in the directly bioavailable and potentially bioavailable fraction in the raw sludge, and especially Cu and Zn at 97.5 and 98.6%, respectively. Through the HTC process the directly bioavailable and potentially bioavailable fractions of PTEs in the sludge hydrochar clearly decreased, and the residual fraction in the hydrochar showed an observable increase. Further stabilisation of PTEs in hydrochar occurred during HTC with the addition of phosphoric acid solution to the feed-water. As the concentration of phosphoric acid in the feed-water increased the percentages of the residual fraction of Cd, Cr, Ni, Pb and Zn in hydrochars each exceeded 80%, but different PTEs behaved differently with increasing phosphate molar ratio in the feed-water. When the molar ratio of phosphate was 15%, the percentages of the residual fractions of Cd, Mn and Zn reached their maximum values in accordance with the changing trend in aromaticity of the hydrochar. Moreover, a large number of phosphate mineral crystals effectively occluded the PTEs in hydrochar. In conclusion, the addition of phosphoric acid to the feed-water during HTC further deactivated PTEs leading to a substantial decline in the potential environmental risk associated with the land application of the sewage sludge.


Bioresource Technology | 2018

Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted

Haifeng Zhuang; Hao Zhu; Shengdao Shan; Liting Zhang; Chengran Fang; Yun Shi

Waste sewage sludge was converted into the novel conductive material of nitrogen doped sewage sludge carbon (N-SC) to enhance anaerobic degradation of coal gasification wastewater (CGW). The results indicated that N-SC played a significant role in enhanced efficiencies, with chemical oxygen demand (COD) removal efficiency increased by 25.4%, methane production rate improved by 68.1% and total volatile fatty acids (VFA) decreased by 37.5% than that of controlled reactor. The conductivity, activity of electron transport, and extracellular polymeric substances (EPS) of anaerobic sludge were remarkably enhanced with N-SC, which promoted sludge granulation and supplied better conductive environment for microorganisms. The microbial community analysis revealed that potential enhancement of direct interspecies electron transfer (DIET) was achieved by electrical connection between enriched Geobacter, Pseudomonas and Methanosaeta with N-SC assisted, which enhanced the anaerobic degradation of CGW. Moreover, anaerobic degradation with N-SC had higher capacity to resist acidic shocks, facilitating the process stability.


Bioresource Technology | 2018

Microwave Assisted Hydrothermal Preparation of Rice Straw Hydrochars for Adsorption of Organics and Heavy Metals

Yin Li; Nyamkhand Tsend; TiKai Li; Heyang Liu; Ruiqin Yang; Xikun Gai; Hongpeng Wang; Shengdao Shan

A series of rice straw hydrochars were produced through a microwave-assisted hydrothermal treatment method, characterized and used for the adsorption of three organics and two heavy metals from aqueous solutions. The hydrochars have carbon contents from 37.44% to 43.31%, are rich in oxygen containing functional groups, and the equilibrium of hydrothermal carbonization reactions could be reached rapidly in microwave environment. The hydrochars can effectively adsorb the model pollutants, the maximum adsorption capacities of Congo red, berberine hydrochloride and 2-naphthol at 298 K and initial concentration of 0.5 mg/mL were 222.1, 174.0 and 48.7 mg/g, respectively, and those of Zn2+ and Cu2+ were 112.8 and 144.9 mg/g, respectively. Adsorption thermodynamic parameters were calculated. These results suggest that microwave-assisted hydrothermal treatment is an effective method for the rapid production of hydrochars, and rice straw hydrochars are promising adsorbents for the removal of water pollutants such as organics and heavy metals.


RSC Advances | 2017

Influence of interfering anions on Cu2+ and Zn2+ ions removal on chestnut outer shell-derived hydrochars in aqueous solution

Xiaoting Hong; Chengran Fang; K.S. Hui; K.N. Hui; Haifeng Zhuang; Wanpeng Liu; Shengdao Shan

Hydrothermal carbonization method was used to produce different hydrochars from chestnut outer shell at various temperatures while resolving the environmental issues of agricultural bio-waste. Hydrochars were adopted as adsorbents to remove heavy metal ions (copper and zinc ions) from aqueous solution. Hydrochar samples were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and Brunauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherm. An increase in the hydrothermal temperature from 160 °C to 220 °C results in higher BET surface area (18.81 m2 g−1) and the porosity of the samples. The resultant hydrochar at 220 °C exhibited a more excellent adsorption performance (8.13 mg g−1 for copper nitrate) than the other two hydrochars at low hydrothermal temperature. The current study addressed the influence of interfering anions of nitrates, sulfates and chlorides on the adsorption performance. The result shows that the hydrochar possesses larger removal efficiency for heavy metal nitrates that that of chlorides and sulfates.


Environmental Science and Pollution Research | 2017

Waste rice straw and coal fly ash composite as a novel sustainable catalytic particle electrode for strengthening oxidation of azo dyes containing wastewater in electro-Fenton process

Haifeng Zhuang; Shengdao Shan; Jianbo Guo; Yuxing Han; Chengran Fang

A novel catalytic particle electrode (CPE) was synthesized from waste rice straw and coal fly ash which was employed to strengthen electro-Fenton treating actual azo dyes containing wastewater. Results showed that the prepared CPE exhibited excellent electro-catalytic activity and significantly improved performance of pollutants removal at near-neutral pH condition, achieving over 73.5 and 90.5% of chemical oxygen demand (COD) and color removal percentages, respectively, allowing discharge criteria to be met. And the electro-Fenton with CPE improved the biodegradability of wastewater in terms of BOD5/COD, resazurin dehydrogenase activity, and toxicity, indicating the potential application of integrated biosystem for this type of wastewater. On the basis of inhibition of different radical scavengers and fluorescence test, it was deduced that the main contribution of the novel CPE was responsible for catalyzing electro-generate H2O2 to produce more hydroxyl radicals in electro-Fenton, and the positive role of generation of superoxide anion at near-neutral pH was also proved, further the possible reaction mechanism was proposed. Moreover, CPE showed the advantages of superior stability and low cost at successive runs and the results offered new insights for sustainable use of waste materials.


Environmental Science and Pollution Research | 2016

Chloride ion-driven transformation from Ag3PO4 to AgCl on the hydroxyapatite support and its dual antibacterial effect against Escherichia coli under visible light irradiation

Xiaoting Hong; Min Li; Shengdao Shan; K.S. Hui; Mingyue Mo; Xiaoli Yuan

Visible light-driven photocatalytic inactivation of Escherichia coli was performed using hydroxyapatite-supported Ag3PO4 nanocomposites (Ag3PO4/HA). The antibacterial performance was evaluated by the methods of zone of inhibition plates and minimum inhibitory concentration test. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to investigate the instability and transformation of the nanocomposite by comparing the crystalline, phase, and the morphology before and after exposure to Luria-Bertani culture medium under visible light irradiation. Ag3PO4 nanoparticles on the support were found to be shortly transformed into AgCl due to high chloride concentration of Luria-Bertani culture medium. The AgCl/HA nanocomposite showed both excellent intrinsic antibacterial performance contributed by the released silver ions and visible light-induced photocatalytic disinfection toward E. coli cells. This dual antibacterial function mechanism was validated by trapping the hydroxyl free radical and detecting the silver ions during the photocatalytic antibacterial process. The morphological change of E. coli cells in different reaction intervals was obtained by scanning electron microscopy (SEM) to complementally verify photocatalytic inactivation of E. coli. This work suggests that an essential comparison study is required for the antibacterial materials before and after the photocatalytic inactivation of bacterial cells using Ag3PO4 nanoparticles or Ag3PO4-related nanocomposites in mediums containing high-concentration chloride ions.

Collaboration


Dive into the Shengdao Shan's collaboration.

Top Co-Authors

Avatar

Haifeng Zhuang

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chengran Fang

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoting Hong

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ruiqin Yang

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yin Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Hongjun Han

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongpeng Wang

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Yuan

Zhejiang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

K.S. Hui

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Jianbo Guo

Zhejiang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge