Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengdong Huang is active.

Publication


Featured researches published by Shengdong Huang.


International Journal of Cardiology | 2013

MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis

Fanglin Lu; Xianxian Zhao; Jun Wu; Yong Cui; Yanjun Mao; Kebiao Chen; Yang Yuan; Dejun Gong; Zhiyun Xu; Shengdong Huang

BACKGROUNDnCell transplantation and gene therapy have been demonstrated to have beneficial effects after a myocardial infarction (MI). Here, we used a large animal model of MI to investigate the beneficial effects of mesenchymal stem cells (MSCs) transfected with hepatocyte growth factor (HGF) or vascular endothelial growth factor (VEGF) genes.nnnMETHODSnA porcine MI model was created by balloon occlusion of the distal left anterior descending artery for 90 min followed by reperfusion. At 1 week after MI, the pigs were infused via the coronary vein with saline (n=8), MSCs + AdNull(n=8), MSC+VEGF(n=10), or MSC+HGF(n=10). Cardiac function and myocardial perfusion were evaluated by using echocardiography and gated cardiac perfusion imaging before and 4 weeks after transplantation. Morphometric and histological analyses were performed.nnnRESULTSnAll cell-implanted groups had better cardiac function than the saline control group. There were further functional improvements in the MSC+HGF group, accompanied by smaller infarct sizes, increased cell survival, and less collagen deposition. Blood vessel densities in the damaged area and cardiac perfusion were significantly greater in the MSC+AdNull group than in the saline control group, and further increased in the MSC+VEGF/HGF groups. Tissue fibrosis was significantly less extensive in the MSC and MSC+VEGF groups than in the saline control group and was most reduced in the MSC+HGF group.nnnCONCLUSIONnMSCs (alone or transfected with VEGF/HGF) delivered into the infarcted porcine heart via the coronary vein improved cardiac function and perfusion, probably by increasing angiogenesis and reducing fibrosis. MSC+HGF was superior to MSC+VEGF, possibly owing to its enhanced antifibrotic effect.


Molecular and Cellular Biology | 2015

Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.

Guijun Yan; Ni Zhu; Shengdong Huang; Bing Yi; Xiying Shang; Ming Chen; Nadan Wang; Guan-Xin Zhang; Jennifer A Talarico; Douglas G. Tilley; Erhe Gao; Jianxin Sun

ABSTRACT The orphan nuclear receptor Nur77 plays critical roles in cardiovascular diseases, and its expression is markedly induced in the heart after beta-adrenergic receptor (β-AR) activation. However, the functional significance of Nur77 in β-AR signaling in the heart remains unclear. By using Northern blot, Western blot, and immunofluorescent staining assays, we showed that Nur77 expression was markedly upregulated in cardiomyocytes in response to multiple hypertrophic stimuli, including isoproterenol (ISO), phenylephrine (PE), and endothelin-1 (ET-1). In a time- and dose-dependent manner, ISO increases Nur77 expression in the nuclei of cardiomyocytes. Overexpression of Nur77 markedly inhibited ISO-induced cardiac hypertrophy by inducing nuclear translocation of Nur77 in cardiomyocytes. Furthermore, cardiac overexpression of Nur77 by intramyocardial injection of Ad-Nur77 substantially inhibited cardiac hypertrophy and ameliorated cardiac dysfunction after chronic infusion of ISO in mice. Mechanistically, we demonstrated that Nur77 functionally interacts with NFATc3 and GATA4 and inhibits their transcriptional activities, which are critical for the development of cardiac hypertrophy. These results demonstrate for the first time that Nur77 is a novel negative regulator for the β-AR-induced cardiac hypertrophy through inhibiting the NFATc3 and GATA4 transcriptional pathways. Targeting Nur77 may represent a potentially novel therapeutic strategy for preventing cardiac hypertrophy and heart failure.


PLOS ONE | 2013

Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis.

Bei You; Shengdong Huang; Qing Qin; Bing Yi; Yang Yuan; Zhiyun Xu; Jianxin Sun

Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.


International Journal of Cardiology | 2013

Protein-L-isoaspartate (D-aspartate) O-methyltransferase protects cardiomyocytes against hypoxia induced apoptosis through inhibiting proapoptotic kinase Mst1

Guijun Yan; Qing Qin; Bing Yi; Kurt J. Chuprun; Haixiang Sun; Shengdong Huang; Jianxin Sun

BACKGROUNDnMammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Hippo kinase from Drosophila and it is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart is not known.nnnMETHODS AND RESULTSnTo identify novel cardiac proteins that may regulate Mst1 activity in the heart under pathophysiological conditions, a yeast two-hybrid screening of a human heart cDNA library with a dominant-negative Mst1 (K59R) mutant used as bait was performed. As a result, protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) was identified as an Mst1-interacting protein. The interaction of PCMT1 with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and native cardiomyocytes, in which PCMT1 interacted with the kinase domain of Mst1, but not with its C-terminal regulatory domain. Overexpression of PCMT1 did not affect the Mst1 expression, but significantly attenuated the Mst1 activation and its apoptotic effects in response to the hypoxia/reoxygenation induced injury in cardiomyocytes. Indeed, upregulation of PCMT1 by CGP3466B, a compound related to the anti-Parkinsons drug R-(-)-deprenyl with potent antiapoptotic effects, inhibited the hypoxia/reoxygenation induced Mst1 activation and cardiomyocyte apoptosis.nnnCONCLUSIONSnThese findings implicate PCMT1 as a novel inhibitor of Mst1 activation in cardiomyocytes and suggest that targeting PCMT1 may prevent myocardial apoptosis through inhibition of Mst1.


PLOS ONE | 2013

Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies.

Shengdong Huang; Yang Yuan; Hao Tang; Xiaohong Liu; Chuangang Fu; He-Zhong Cheng; Jianwei Bi; Yongwei Yu; Dejun Gong; Wei Zhang; Jie Chen; Zhiyun Xu

The cancer stem cell (CSC) model depicts that tumors are hierarchically organized and maintained by CSCs lying at the apex. CSCs have been “identified” in a variety of tumors through the tumor-forming assay, in which tumor cells distinguished by a certain cell surface marker (known as a CSC marker) were separately transplanted into immunodeficient mice. In such assays, tumor cells positive but not negative for the CSC marker (hereby defined as CSC+ and CSC− cells, respectively) have the ability of tumor-forming and generating both progenies. However, here we show that CSC+ and CSC− cells exhibit similar proliferation in the native states. Using a cell tracing method, we demonstrate that CSC− cells exhibit similar tumorigenesis and proliferation as CSC+ cells when they were co-transplanted into immunodeficient mice. Through serial single-cell derived subline construction, we further demonstrated that CSC+ and CSC− cells from CSC marker expressing tumors could invariably generate both progenies, and their characteristics are maintained among different generations irrespective of the origins (CSC+-derived or CSC−-derived). These findings demonstrate that tumorigenic cells cannot be distinguished by common CSC markers alone and we propose that cautions should be taken when using these markers independently to identify cancer stem cells due to the phenotypic plasticity of tumor cells.


PLOS ONE | 2012

Meta-analysis of RAGE gene polymorphism and coronary heart disease risk.

Jun Wang; Lianjiang Zou; Zhigang Song; Xilong Lang; Shengdong Huang; Fanglin Lu; Lin Han; Zhiyun Xu

Background Recent data from human and animal studies have shown an upregulated expression of advanced glycosylation end product–specific receptor (RAGE) in human atherosclerotic plaques 1 and in retina, messangial, and aortic vessels, suggesting an important role of RAGE in the pathogenesis of atherothrombotic diseases. In the past few years, the relationship between RAGE polymorphisms (−429T/C, −374T/A, and G82S) and coronary heart disease (CHD) has been reported in various ethnic groups; however, these studies have yielded contradictory results. Methods PubMed, ISI web of science, EMBASE and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between RAGE polymorphisms and susceptibility to CHD. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Results A total of 17 studies including 4343 patients and 5402 controls were involved in this meta-analysis. Overall, no significant results were observed for −429T/C (OR u200a=u200a1.01, 95% CI: 0.92–1.12, P u200a=u200a0.78), −374T/A (OR u200a=u200a1.11, 95% CI: 0.98–1.26, P u200a=u200a0.09) and G82S (OR u200a=u200a1.12, 95% CI: 0.86–1.45, P u200a=u200a0.41) polymorphism. In the stratified analyses according to ethnicity, sample size, CHD endpoint and Hardy-Weinberg status, no evidence of any gene-disease association was obtained. Conclusions This meta-analysis demonstrates that there is no association between the RAGE −429T/C, −374T/A and G82S polymorphisms and CHD.


PLOS ONE | 2014

Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats

Yanhu Ge; Feixiang Wu; Xuejun Sun; Zhenghua Xiang; Li-Qun Yang; Shengdong Huang; Zhi-Jie Lu; Yuming Sun; Weifeng Yu

Background Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. Methodology/Principal findings In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. Conclusion/Significance Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.


BMC Cardiovascular Disorders | 2014

BRG1 overexpression in smooth muscle cells promotes the development of thoracic aortic dissection

Yang Yuan; Chong Wang; Jibin Xu; Jin Tao; Zhiyun Xu; Shengdong Huang

BackgroundHere we investigated Brahma-related gene 1 (BRG1) expression in aortic smooth muscle cells (SMCs) and its role in the regulation of the pathological changes in aortic SMCs of thoracic arotic dissection (TAD).MethodsBRG1, matrix metalloproteinase 2 (MMP2), and MMP9 mRNA and protein expression in human aortic specimens were examined by qPCR and western blot, respectively. The percentage of apoptotic and contractile SMCs in aortic specimens were determined by TUNEL assay and α-SMA immunohistochemical staining, respectively. The role of BRG1 in MMP2 and MMP9 expression, cell apoptosis, and phenotype transition in aortic SMCs were investigated using a human aortic SMC line via adenovirus mediated gene transfer. MMPs mRNA and protein levels were analyzed by qPCR and western blot, respectively. The percentage of apoptotic and contractile cells were determined through flow cytometry analysis.ResultsThe expression level of BRG1 in the aortic walls (adventitia-removed) was significantly higher in the TAD than the normal group. BRG1 expression was positively correlated to expression of MMP2 and MMP9 and SMC apoptosis, but was negatively correlated to the percentage of contractile aortic SMCs in TAD specimens. In human aortic SMC line, BRG1 transfection led to significant upregulation of MMP2 and MMP9 expression and a concomitant increase in SMC apoptosis as well as a decrease in the percentage of contractile phenotype of cells.ConclusionsBRG1 is significantly upregulated in the aortic SMCs of TAD, and its overexpression might promote the development of TAD by increasing MMP2 and MMP9 expression, inducing SMC apoptosis and the transition from contractile to synthetic phenotype.


Cardiovascular Research | 2016

Pim1 kinase promotes angiogenesis through phosphorylation of endothelial nitric oxide synthase at Ser-633

Ming Chen; Bing Yi; Ni Zhu; Xin Wei; Guanxin Zhang; Shengdong Huang; Jianxin Sun

AIMSnPosttranslational modification, such as phosphorylation, plays an essential role in regulating activation of endothelial NO synthase (eNOS). In the present study, we aim to determine whether eNOS could be phosphorylated and regulated by a novel serine/threonine-protein kinase Pim1 in vascular endothelial cells (ECs).nnnMETHODS AND RESULTSnUsing immunoprecipitation and protein kinase assays, we demonstrated that Pim1 specifically interacts with eNOS, which leads to a marked phosphorylation of eNOS at Ser-633 and increased production of nitric oxide (NO). Intriguingly, in response to VEGF stimulation, eNOS phosphorylation at Ser-633 exhibits two distinct phases: transient phosphorylation occurring between 0 and 60 min and sustained phosphorylation occurring between 2 and 24 h, which are mediated by the protein kinase A (PKA) and Pim1, respectively. Inhibiting Pim1 by either pharmacological inhibitor SMI-4a or the dominant-negative form of Pim1 markedly attenuates VEGF-induced tube formation, while Pim1 overexpression significantly increases EC tube formation and migration in an NO-dependent manner. Importantly, Pim1 expression and eNOS phosphorylation at Ser-633 were substantially decreased in high glucose-treated ECs and in the aorta of db/db diabetic mice. Increased Pim1 expression ameliorates impaired vascular angiogenesis in diabetic mice, as determined by an ex vivo aortic ring assay.nnnCONCLUSIONnOur findings demonstrate Pim1 as a novel kinase that is responsible for the phosphorylation of eNOS at Ser-633 and enhances EC sprouting of aortic rings from diabetic mice, suggesting that Pim1 could potentially serve as a novel therapeutic target for revascularization strategies.


Anesthesiology | 2014

Proteinase-activated receptor 1 contributed to up-regulation of enkephalin in keratinocytes of patients with obstructive jaundice.

Kun-Ming Tao; Yong Tao; Cai-Yang Chen; Li-Qun Yang; Zhi-Jie Lu; Yuming Sun; Shengdong Huang; Weifeng Yu

Background:Skin synthesis of endogenous opioids such as enkephalin is considered to be increased in cholestatic rodents, which may induce antinociception in cholestatic liver disease. No studies have reported yet the expression of skin enkephalin in patients with cholestasis. Methods:Electrical pain threshold, postoperative morphine consumption, and skin enkephalin expression were measured in patients with jaundice (n = 18) and control patients (n = 16). Male Sprague–Dawley rats (n = 52) and human keratinocyte cell line HaCaT were used in vivo and in vitro studies, respectively. Nociceptive thresholds and plasma and skin levels of methionine-enkephalin were compared in protease-activated receptors-1–antagonized and control bile duct–ligated rats. In in vitro study, the effect on thrombin-induced enkephalin expression was examined and the role of extracellular regulated protein kinases 1/2 and p38 was investigated. Results:The authors found that: (1) the electrical pain threshold (mean ± SD) was 1.1 ± 0.1 mA in control patients, whereas it was significantly increased in patients with jaundice (1.7 ± 0.3 mA); 48-h postoperative morphine consumption was approximately 50% higher in the control group than that in the group with jaundice; (2) Skin keratinocytes enkephalin expression was increased in the patients with jaundice; (3) Protease-activated receptors-1 antagonist 1 &mgr;g·kg−1·day−1 treatment to the bile duct–ligated rats significantly reduced plasma levels of methionine-enkephalin, nociceptive thresholds, and keratinocytes enkephalin expression; and (4) protease-activated receptors-1 activation induced enkephalin expression through phosphorylation of extracellular regulated protein kinases 1/2 and p38 in keratinocytes. Conclusion:Protease-activated receptors-1 activation in peripheral keratinocytes may play an important role in the local synthesis of enkephalin during cholestasis.

Collaboration


Dive into the Shengdong Huang's collaboration.

Top Co-Authors

Avatar

Bing Yi

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jianxin Sun

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Zhiyun Xu

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Weifeng Yu

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Yuan

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Feixiang Wu

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Guijun Yan

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Qing Qin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Dejun Gong

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Li-Qun Yang

Second Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge