Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengfeng Cheng is active.

Publication


Featured researches published by Shengfeng Cheng.


Journal of Chemical Physics | 2012

Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: a molecular dynamics study.

Shengfeng Cheng; Gary S. Grest

Large-scale molecular dynamics simulations are used to simulate a layer of nanoparticles floating on the surface of a liquid. Both a low viscosity liquid, represented by Lennard-Jones monomers, and a high viscosity liquid, represented by linear homopolymers, are studied. The organization and diffusion of the nanoparticles are analyzed as the nanoparticle density and the contact angle between the nanoparticles and liquid are varied. When the interaction between the nanoparticles and liquid is reduced the contact angle increases and the nanoparticles ride higher on the liquid surface, which enables them to diffuse faster. In this case the short-range order is also reduced as seen in the pair correlation function. For the polymeric liquids, the out-of-layer fluctuation is suppressed and the short-range order is slightly enhanced. However, the diffusion becomes much slower and the mean square displacement even shows sub-linear time dependence at large times. The relation between diffusion coefficient and viscosity is found to deviate from that in bulk diffusion. Results are compared to simulations of the identical nanoparticles in 2-dimensions.


Tribology Letters | 2010

Defining Contact at the Atomic Scale

Shengfeng Cheng; Mark O. Robbins

Contact area plays a central role in continuum theories of friction and adhesion, and there is growing interest in calculating it with atomic resolution. Molecular dynamics simulations are used to study definitions of contact area based on instantaneous and time-averaged forces or separations between atoms. Flat and spherical surfaces with different atomic geometries, adhesion, and temperatures are examined. In continuum theory, the fraction of two flat surfaces that is in contact rises sharply from zero to unity when a load is applied. This simple behavior is surprisingly difficult to reproduce with atomic scale definitions of contact. At typical temperatures, nonadhesive surfaces are held apart by a small fraction of atoms with large thermal fluctuations until the normal pressure is comparable to the ideal hardness. The contact area associated with atoms interacting at any instant rises linearly with load. Time averaging produces a monotonic increase in area with time interval that only converges to the sharp rise in continuum models for the special case of identical crystal surfaces. Except in this special case, the time-averaged contact area between adhesive surfaces also rises to full contact over a range of pressures comparable to the ideal hardness. Similar complications are encountered in defining contact areas for spherical tips. The fraction of atoms in contact rises linearly with local pressure, and the contact area based on time-averaged forces does not fit continuum theory. A simple harmonic mean-field theory provides a quantitative description of the simulation results and explains why the instantaneous forces on atoms are observed to have a universal exponential form. The results imply that continuum models of contact only apply to forces averaged over areas containing many atoms.


Journal of Chemical Physics | 2011

Evaporation of Lennard-Jones fluids

Shengfeng Cheng; Jeremy B. Lechman; Steven J. Plimpton; Gary S. Grest

Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.


Physical Review E | 2010

Contact and friction of nanoasperities: Effects of adsorbed monolayers

Shengfeng Cheng; Binquan Luan; Mark O. Robbins

Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, and spherical tip with radius of order 30 nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact during a time interval Deltat grows as a power of Deltat when the film is present and as the logarithm of Deltat for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.


Journal of Chemical Physics | 2013

Molecular dynamics simulations of evaporation-induced nanoparticle assembly

Shengfeng Cheng; Gary S. Grest

While evaporating solvent is a widely used technique to assemble nano-sized objects into desired superstructures, there has been limited work on how the assembled structures are affected by the physical aspects of the process. We present large scale molecular dynamics simulations of the evaporation-induced assembly of nanoparticles suspended in a liquid that evaporates in a controlled fashion. The quality of the nanoparticle crystal formed just below the liquid/vapor interface is found to be better at relatively slower evaporation rates, as less defects and grain boundaries appear. This trend is understood as the result of the competition between the accumulation and diffusion times of nanoparticles at the liquid/vapor interface. When the former is smaller, nanoparticles are deposited so fast at the interface that they do not have sufficient time to arrange through diffusion, which leads to the prevalence of defects and grain boundaries. Our results have important implications in understanding assembly of nanoparticles and colloids in non-equilibrium liquid environments.


ACS Macro Letters | 2016

Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation

Shengfeng Cheng; Gary S. Grest

Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier to prevent the NPs from moving to the interface. Our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.


Physical Review E | 2014

Capillary Adhesion at the Nanometer Scale

Shengfeng Cheng; Mark O. Robbins

Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions based on macroscopic theory for h down to ∼5 to 10 nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the macroscopic theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the macroscopic theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the macroscopic theory for h down to ∼1 nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The component in the plane of the substrate is consistent with the capillary pressure predicted by the macroscopic theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.


Soft Matter | 2013

Simulating the miscibility of nanoparticles and polymer melts

Dong Meng; Sanat K. Kumar; Shengfeng Cheng; Gary S. Grest

While the miscibility and spatial dispersion of nanoparticles (NPs) in a polymer melt critically affects the properties of the resulting nanocomposite, little simulation work exists on understanding this critical issue. We use isothermal–isobaric ensemble simulations and show that larger NPs disperse more easily than small NPs, implying the relative dominance of NP–polymer attractions over depletion-induced inter-NP attractions. Similarly, polymer chain length only plays a secondary role, probably because the entropic, depletion-induced inter-NP attractions only occur over length scales comparable to the correlation length in the melt, namely the segment size, σ. Importantly, no NP self-assembly is observed, and the only transition that occurs for polymer systems with large enough NPs (σNP ≥ 6σ) is of a purely, first-order solid–fluid type. This result follows from the fact that the range of effective attractions between the NPs, δ = σ/σNP, is short enough to preclude a vapor–liquid transition. This finding is given more weight since an equivalent sticky sphere model can reproduce the essence of our simulations. The observed behavior is captured by an effective two-body, polymer-mediated, inter-NP interaction potential, a surprising result in light of conventional wisdom in this field which implies the importance of many body effects.


Langmuir | 2011

Dynamics of a Disturbed Sessile Drop Measured by Atomic Force Microscopy (AFM)

Patricia McGuiggan; Daniel Grave; Jay Wallace; Shengfeng Cheng; Andrea Prosperetti; Mark O. Robbins

A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.


Soft Matter | 2012

Self-assembly of artificial microtubules

Shengfeng Cheng; Ankush Aggarwal; Mark J. Stevens

Understanding the complex self-assembly of biomacromolecules is a major outstanding question. Microtubules are one example of a biopolymer that possesses characteristics quite distinct from standard synthetic polymers that are derived from its hierarchical structure. In order to understand how to design and build artificial polymers that possess features similar to those of microtubules, we have initially studied the self-assembly of model monomers into a tubule geometry. Our model monomer has a wedge shape with lateral and vertical binding sites that are designed to form tubules. We used molecular dynamics simulations to study the assembly process for a range of binding site interaction strengths. In addition to determining the optimal regime for obtaining tubules, we have calculated a diagram of the structures that form over a wide range of interaction strengths. Unexpectedly, we find that the helical tubules form, even though the monomer geometry is designed for nonhelical tubules. We present the detailed dynamics of the tubule self-assembly process and show that the interaction strengths must be in a limited range to allow rearrangement within clusters. We extended previous theoretical methods to treat our system and to calculate the boundaries between different structures in the diagram.

Collaboration


Dive into the Shengfeng Cheng's collaboration.

Top Co-Authors

Avatar

Gary S. Grest

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Stevens

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Michael Chandross

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andres Concha

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Erik David Spoerke

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jeremy B. Lechman

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Steven J. Plimpton

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge