Shenggao Zhou
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shenggao Zhou.
Journal of Chemical Theory and Computation | 2014
Shenggao Zhou; Li-Tien Cheng; Joachim Dzubiella; Bo Li; J. Andrew McCammon
We incorporate the Poisson–Boltzmann (PB) theory of electrostatics into our variational implicit-solvent model (VISM) for the solvation of charged molecules in an aqueous solvent. In order to numerically relax the VISM free-energy functional by our level-set method, we develop highly accurate methods for solving the dielectric PB equation and for computing the dielectric boundary force. We also apply our VISM-PB theory to analyze the solvent potentials of mean force and the effect of charges on the hydrophobic hydration for some selected molecular systems. These include some single ions, two charged particles, two charged plates, and the host–guest system Cucurbit[7]uril and Bicyclo[2.2.2]octane. Our computational results show that VISM with PB theory can capture well the sensitive response of capillary evaporation to the charge in hydrophobic confinement and the polymodal hydration behavior and can provide accurate estimates of binding affinity of the host–guest system. We finally discuss several issues for further improvement of VISM.
International Journal of Computer Mathematics | 2011
Shenggao Zhou; Xiao-Liang Cheng
In this paper, a linearly semi-implicit compact scheme is developed for the Burgers–Huxley equation. The equation is decomposed into two subproblems, i.e. a Burgers equation and a nonlinear ODE, by the operator splitting technique. The Burgers equation is solved by a linearly self-starting compact scheme which is fourth-order accurate in space and second-order accurate in time. The nonlinear ODE is discretized by a third-order semi-implicit Runge–Kutta method, which possesses good numerical stability with low computational cost. The numerical experiments show that the scheme provides the expected convergence order. Finally, several experiments are conducted to simulate the solutions of the Burgers–Huxley equation to validate our numerical method.
Journal of Computational Chemistry | 2015
Shenggao Zhou; Li-Tien Cheng; Hui Sun; Jianwei Che; Joachim Dzubiella; Bo Li; J. A. McCammon
We introduce a software package for the analysis of biomolecular solvation. The package collects computer codes that implement numerical methods for a variational implicit‐solvent model (VISM). The input of the package includes the atomic data of biomolecules under consideration and the macroscopic parameters such as solute–solvent surface tension, bulk solvent density and ionic concentrations, and the dielectric coefficients. The output includes estimated solvation free energies and optimal macroscopic solute–solvent interfaces that are obtained by minimizing the VISM solvation free‐energy functional among all possible solute–solvent interfaces enclosing the solute atoms. We review the VISM with various descriptions of electrostatics. We also review our numerical methods that consist mainly of the level‐set method for relaxing the VISM free‐energy functional and a compact coupling interface method for the dielectric Poisson–Boltzmann equation. Such numerical methods and algorithms constitute the central modules of the software package. We detail the structure of the package, format of input and output files, workflow of the codes, and the postprocessing of output data. Our demo application to a host–guest system illustrates how to use the package to perform solvation analysis for biomolecules, including ligand–receptor binding systems. The package is simple and flexible with respect to minimum adjustable parameters and a wide range of applications. Future extensions of the package use can include the efficient identification of ligand binding pockets on protein surfaces.
Journal of Chemical Theory and Computation | 2015
Zuojun Guo; Bo Li; Li-Tien Cheng; Shenggao Zhou; J. Andrew McCammon; Jianwei Che
Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.
Journal of Chemical Theory and Computation | 2013
Shenggao Zhou; Kathleen E. Rogers; César Augusto F. de Oliveira; Riccardo Baron; Li-Tien Cheng; Joachim Dzubiella; Bo Li; J. Andrew McCammon
The synthetic host cucurbit[7]uril (CB[7]) binds aromatic guests or metal complexes with ultrahigh affinity compared with that typically displayed in protein–ligand binding. Due to its small size, CB[7] serves as an ideal receptor–ligand system for developing computational methods for molecular recognition. Here, we apply the recently developed variational implicit-solvent model (VISM), numerically evaluated by the level-set method, to study hydration effects in the high-affinity binding of the B2 bicyclo[2.2.2]octane derivative to CB[7]. For the unbound host, we find that the host cavity favors the hydrated state over the dry state due to electrostatic effects. For the guest binding, we find reasonable agreement to experimental binding affinities. Dissection of the individual VISM free-energy contributions shows that the major driving forces are water-mediated hydrophobic interactions and the intrinsic (vacuum) host–guest van der Waals interactions. These findings are in line with recent experiments and molecular dynamics simulations with explicit solvent. It is expected that the level-set VISM, with further refinement on the electrostatic descriptions, can efficiently predict molecular binding and recognition in a wide range of future applications.
Nonlinearity | 2013
Bo Li; Pei Liu; Zhenli Xu; Shenggao Zhou
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.
Siam Journal on Applied Mathematics | 2013
Li-Tien Cheng; Bo Li; Michael White; Shenggao Zhou
The interplay between geometry and electrostatics contributes significantly to hydrophobic interactions of biomolecules in an aqueous solution. With an implicit solvent, such a system can be described macroscopically by the dielectric boundary that separates the high-dielectric solvent from low-dielectric solutes. This work concerns the motion of a model cylindrical dielectric boundary as the steepest descent of a free-energy functional that consists of both the surface and electrostatic energies. The effective dielectric boundary force is defined and an explicit formula of the force is obtained. It is found that such a force always points from the solvent region to solute region. In the case that the interior of a cylinder is of a lower dielectric, the motion of the dielectric boundary is initially driven dominantly by the surface force but is then driven inward quickly to the cylindrical axis by both the surface and electrostatic forces. In the case that the interior of a cylinder is of a higher dielectric, the competition between the geometrical and electrostatic contributions leads to the existence of equilibrium boundaries that are circular cylinders. Linear stability analysis is presented to show that such an equilibrium is only stable for a perturbation with a wavenumber larger than a critical value. Numerical simulations are reported for both of the cases, confirming the analysis on the role of each component of the driving force. Implications of the mathematical findings to the understanding of charged molecular systems are discussed.
Siam Journal on Applied Mathematics | 2015
Bo Li; Hui Sun; Shenggao Zhou
The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poissons equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.
Journal of Physical Chemistry B | 2014
Nuo Wang; Shenggao Zhou; Peter M. Kekenes-Huskey; Bo Li; J. Andrew McCammon
Mean-field methods, such as the Poisson–Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson–Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.
Siam Journal on Applied Mathematics | 2018
Lijie Ji; Pei Liu; Zhenli Xu; Shenggao Zhou
The charge transport in an environment with inhomogeneous dielectric permittivity is ubiquitous in many areas such as electrochemical energy devices and biophysical systems. We theoretically study ...