Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengjie Fan is active.

Publication


Featured researches published by Shengjie Fan.


Scientific Reports | 2015

Protopanaxatriol, a novel PPARγ antagonist from Panax ginseng , alleviates steatosis in mice

Yu Zhang; Lijing Yu; Wujie Cai; Shengjie Fan; Li Feng; Guang Ji; Cheng Huang

Obesity is prevalent worldwide, and is highly associated with metabolic disorders, such as insulin resistance, hyperlipidemia and steatosis. Ginseng has been used as food and traditional herbal medicine for the treatment of various metabolic diseases. However, the molecular mechanisms how ginseng and its components participate in the regulation of lipogenesis are still largely unclear. Here, we identified that protopanaxatriol (PPT), a major ginseng constituent, inhibited rosiglitazone-supported adipocyte differentiation of 3T3-L1 cells by repressing the expression of lipogenesis-related gene expression. In high-fat diet-induced obesity (DIO) mice, PPT reduced body weight and serum lipid levels, improved insulin resistance, as well as morphology and lipid accumulation, particular macrovesicular steatosis, in the livers. These effects were confirmed with genetically obese ob/ob mice. A reporter gene assay showed that PPT specifically inhibited the transactivity of PPARγ, but not PPAR α, β/δ and LXR α, β. TR-FRET assay revealed that PPT was specifically bound to PPARγ LBD, which was further confirmed by the molecular docking study. Our data demonstrate that PPT is a novel PPARγ antagonist. The inhibition of PPARγ activity could be a promising therapy for obesity and steatosis. Our findings shed new light on the mechanism of ginseng in the treatment of metabolic syndrome.


PLOS ONE | 2012

Extract of Kuding Tea Prevents High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice via Liver X Receptor (LXR) β Antagonism

Shengjie Fan; Yu Zhang; Na Hu; Qinhu Sun; Xiaobo Ding; Guowen Li; Bin Zheng; Ming Gu; Feisi Huang; Yin-Qiang Sun; Zhiqin Zhou; Xiong Lu; Cheng Huang; Guang Ji

Objective To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets. Design For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay. Results In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes. Conclusion We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.


European Journal of Pharmacology | 2013

Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

Li Jing; Yu Zhang; Shengjie Fan; Ming Gu; Yu Guan; Xiong Lu; Cheng Huang; Zhiqin Zhou

D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders.


Journal of Nutritional Biochemistry | 2014

Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice.

Shengjie Fan; Yu Zhang; Qinhu Sun; Lijing Yu; Mingxia Li; Bin Zheng; Ximin Wu; Baican Yang; Yiming Li; Cheng Huang

Okra is an important tropical vegetable and source of dietary medicine. Here, we assayed the effects of an ethanol extract of okra (EO) and its major flavonoids isoquercitrin and quercetin 3-O-gentiobioside on metabolic disorders in high-fat diet-induced obese mouse. We found that treatment with EO, isoquercitrin and quercetin 3-O-gentiobioside reduced blood glucose and serum insulin levels and improved glucose tolerance in obese mice. Meanwhile, serum triglyceride levels and liver morphology in the mice were significantly ameliorated by EO and isoquercitrin treatment. Total cholesterol levels in isoquercitrin and quercetin 3-O-gentiobioside treated mice were also reduced. We also found that EO inhibited the expression of nuclear receptor transcription factor PPARγ, which is an important regulator of lipid and glucose homeostasis. Furthermore, we determined that EO and quercetin 3-O-gentiobioside have antioxidant activity in vitro. Our results indicate that okra may serve as a dietary therapy for hyperglycemia and hypertriglyceridemia.


Ppar Research | 2012

Rhein Reduces Fat Weight in db/db Mouse and Prevents Diet-Induced Obesity in C57Bl/6 Mouse through the Inhibition of PPARγ Signaling

Yu Zhang; Shengjie Fan; Na Hu; Ming Gu; Chunxiao Chu; Yiming Li; Xiong Lu; Cheng Huang

Rheum palmatum has been used most frequently in the weight-reducing formulae in traditional Chinese medicine. However, the components of Rheum palmatum that play the antiobesity role are still uncertain. Here, we tested the weight-reducing effect of two major Rheum palmatum compounds on db/db mouse. We found that rhein (100 mg kg−1 day−1), but not emodin, reduced the fat weight in db/db mouse. Using diet-induced obese (DIO) C57BL/6 mice, we identified that rhein blocked high-fat diet-induced obesity, decreased fat mass and the size of white and brown adipocytes, and lowered serum cholesterol, LDL cholesterol, and fasting blood glucose levels in the mice. To elucidate the underlying mechanisms, we used reporter assay and gene expression analysis and found that rhein inhibited peroxisome proliferator-activated receptor γ (PPARγ) transactivity and the expression of its target genes, suggesting that rhein may act as a PPARγ antagonist. Our data indicate that rhein may be a promising choice for antiobesity therapy.


PLOS ONE | 2013

Extracts of Pomelo Peels Prevent High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice through Activating the PPARα and GLUT4 Pathway

Xiaobo Ding; Lu Guo; Yu Zhang; Shengjie Fan; Ming Gu; Yan Lu; Dong Jiang; Yiming Li; Cheng Huang; Zhiqin Zhou

Objective Metabolic syndrome is a serious health problem in both developed and developing countries. The present study investigated the anti-metabolic disorder effects of different pomelo varieties on obese C57BL/6 mice induced by high-fat (HF) diet. Design The peels of four pomelo varieties were extracted with ethanol and the total phenols and flavonoids content of these extracts were measured. For the animal experiment, the female C57BL/6 mice were fed with a Chow diet or a HF diet alone or supplemented with 1% (w/w) different pomelo peel extracts for 8 weeks. Body weight and food intake were measured every other day. At the end of the treatment, the fasting blood glucose, glucose tolerance and insulin (INS) tolerance test, serum lipid profile and insulin levels, and liver lipid contents were analyzed. The gene expression analysis was performed with a quantitative real-time PCR assay. Result The present study showed that the Citrus grandis liangpinyou (LP) and beibeiyou (BB) extracts were more potent in anti-metabolic disorder effects than the duanshiyou (DS) and wubuyou (WB) extracts. Both LP and BB extracts blocked the body weight gain, lowered fasting blood glucose, serum TC, liver lipid levels, and improved glucose tolerance and insulin resistance, and lowered serum insulin levels in HF diet-fed mice. Compared with the HF group, LP and BB peel extracts increased the mRNA expression of PPARα and its target genes, such as FAS, PGC-1α and PGC-1β, and GLUT4 in the liver and white adipocyte tissue (WAT). Conclusion We found that that pomelo peel extracts could prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through the activation of the PPARα and GLUT4 signaling. Our results indicate that pomelo peels could be used as a dietary therapy and the potential source of drug for metabolic disorders.


Molecular Nutrition & Food Research | 2013

Okra polysaccharide improves metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

Shengjie Fan; Lu Guo; Yu Zhang; Qinhu Sun; Baican Yang; Cheng Huang

Okra is a tropical vegetable that is rich in polysaccharides. Here, we investigated the effects of okra polysaccharide (OP) on metabolic disorders in mice. We found that OP lowered body weight and glucose levels, improved glucose tolerance, and decreased serum total cholesterol levels in high-fat diet-fed C57BL/6 mice. OP regulated the gene expression of liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) and their target genes in the liver and the adipose tissue of the mice. These results suggest that OP may have therapeutic effects on metabolic diseases via the inhibition of LXR and PPAR signaling.


PLOS ONE | 2013

Extracts of Rhizoma polygonati odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 mice.

Ming Gu; Yu Zhang; Shengjie Fan; Xiaobo Ding; Guang Ji; Cheng Huang

Polygonatum odoratum (Mill.) Druce belongs to the genus Polygonatum family of plants. In traditional Chinese medicine, the root of Polygonatum odoratum, Rhizoma Polygonati Odorati, is used both for food and medicine to prevent and treat metabolic disorders such as hyperlipidemia, hyperglycemia, obesity and cardiovascular disease. However, there is no solid experimental evidence to support these applications, and the underlying mechanism is also needed to be elucidated. Here, we examined the effect of the extract of Rhizoma Polygonati Odorati (ER) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, the ER blocked body weight gain, and lowered serum total cholesterol (TC), triglyceride (TG) and fasting blood glucose, improved glucose tolerance test (GTT) and insulin tolerance test (ITT), reduced the levels of serum insulin and leptin, and increased serum adiponectin levels in mice fed with a high-fat diet significantly. In the therapeutic study, we induced obesity in the mice and treated the obese mice with ER for two weeks. We found that ER treatments reduced serum TG and fasting blood glucose, and improved glucose tolerance in the mice. Gene expression analysis showed that ER increased the mRNA levels of peroxisome proliferator-activated receptors (PPAR) γ and α and their downstream target genes in mice livers, adipose tissues and HepG2 cells. Our data suggest that ER ameliorates metabolic disorders and enhances the mRNA expression of PPARs in obese C57BL/6 mice induced by high-fat diet.


Evidence-based Complementary and Alternative Medicine | 2012

Citrus ichangensis Peel Extract Exhibits Anti-Metabolic Disorder Effects by the Inhibition of PPARγ and LXR Signaling in High-Fat Diet-Induced C57BL/6 Mouse

Xiaobo Ding; Shengjie Fan; Yan Lu; Yu Zhang; Ming Gu; Lu Zhang; Gaigai Liu; Lu Guo; Dong Jiang; Xiong Lu; Yiming Li; Zhiqin Zhou; Cheng Huang

Obesity is a common nutritional disorder associated with type 2 diabetes, cardiovascular diseases, dyslipidemia, and certain cancers. In this study, we investigated the effects of Citrus ichangensis peel extract (CIE) in high-fat (HF) diet-induced obesity mice. Female C57BL/6 mice were fed a chow diet or an HF diet alone or supplemented with 1% w/w CIE for 8 weeks. We found that CIE treatment could lower blood glucose level and improve glucose tolerance. In the HF+CIE group, body weight gain, serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) levels, and liver triglyceride (TG) and TC concentrations were significantly (P < 0.05) decreased relative to those in the HF group. To elucidate the mechanism of CIE on the metabolism of glucose and lipid, related genes expression in liver were examined. In liver tissue, CIE significantly decreased the mRNA expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, such as fatty acid synthase (FAS) and acyl-CoA oxidase (ACO). Moreover, CIE also decreased the expression of liver X receptor (LXR) α and β which are involved in lipid and glucose metabolism. These results suggest that CIE administration could alleviate obesity and related metabolic disorders in HF diet-induced obesity mice through the inhibition of PPARγ and LXR signaling.


PLOS ONE | 2014

Effects of Fortunella margarita Fruit Extract on Metabolic Disorders in High-Fat Diet-Induced Obese C57BL/6 Mice

Si Tan; Mingxia Li; Xiaobo Ding; Shengjie Fan; Lu Guo; Ming Gu; Yu Zhang; Li Feng; Dong Jiang; Yiming Li; Wanpeng Xi; Cheng Huang; Zhiqin Zhou

Introduction Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. Methods The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. Results In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Conclusion Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

Collaboration


Dive into the Shengjie Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Guo

Shanghai University

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Ding

College of Horticulture

View shared research outputs
Top Co-Authors

Avatar

Zhiqin Zhou

College of Horticulture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge