Shengshu Huang
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengshu Huang.
Nature | 2008
Emma Byres; Adrienne W. Paton; James C. Paton; Jonas Löfling; David F. Smith; Matthew C. J. Wilce; Ursula M. Talbot; Damien C. Chong; Hai Yu; Shengshu Huang; Xi Chen; Nissi M. Varki; Ajit Varki; Jamie Rossjohn; Travis Beddoe
AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxins receptor is generated by metabolic incorporation of an exogenous factor derived from food.
Nature Protocols | 2006
Hai Yu; Harshal A. Chokhawala; Shengshu Huang; Xi Chen
Chemoenzymatic synthesis, which combines the flexibility of chemical synthesis and the high selectivity of enzymatic synthesis, is a powerful approach to obtain complex carbohydrates. It is a preferred method for synthesizing sialic acid-containing structures, including those with diverse naturally occurring and non-natural sialic acid forms, different sialyl linkages and different glycans that link to the sialic acid. Starting from N-acetylmannosamine, mannose or their chemically or enzymatically modified derivatives, sialic acid aldolase-catalyzed condensation reaction leads to the formation of sialic acids and their derivatives. These compounds are subsequently activated by a CMP-sialic acid synthetase and transferred to a wide range of suitable acceptors by a suitable sialyltransferase for the formation of sialosides containing natural and non-natural functionalities. The three-enzyme coupled synthesis of sialosides can be carried out in one pot without the isolation of intermediates. The time for synthesis is 4–18 h. Purification and characterization of the product can be completed within 2–3 d.
Journal of Experimental Medicine | 2010
Rachel E. Taylor; Christopher J. Gregg; Vered Padler-Karavani; Darius Ghaderi; Hai Yu; Shengshu Huang; Ricardo U. Sorensen; Xi Chen; Jaime Inostroza; Victor Nizet; Ajit Varki
The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans.
ACS Chemical Biology | 2008
Harshal A. Chokhawala; Shengshu Huang; Kam Lau; Hai Yu; Jiansong Cheng; Vireak Thon; Nancy Hurtado-Ziola; Juan A. Guerrero; Ajit Varki; Xi Chen
Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.
Journal of Biological Chemistry | 2012
Vered Padler-Karavani; Xuezheng Song; Hai Yu; Nancy Hurtado-Ziola; Shengshu Huang; Saddam Muthana; Harshal A. Chokhawala; Jiansong Cheng; Andrea Verhagen; Martijn A. Langereis; Ralf Kleene; Melitta Schachner; Raoul J. de Groot; Yi Lasanajak; Haruo Matsuda; Richard Schwab; Xi Chen; David F. Smith; Richard D. Cummings; Ajit Varki
Background: Various glycan microarrays are currently widely used, but systematic cross-comparisons are lacking. Results: We compare and contrast two sialoglycan microarrays using a variety of sialic acid-binding proteins. Conclusion: Diverse array formats can strengthen the quality of information, but differences between arrays may be observed. Significance: Glycan arrays with similar glycan structures cannot be simply assumed to give similar results. DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.
Molecular BioSystems | 2011
Yiyan Fei; Yung Shin Sun; Yanhong Li; Kam Lau; Hai Yu; Harshal A. Chokhawala; Shengshu Huang; James P. Landry; Xi Chen; X. D. Zhu
Interactions of glycan-binding proteins (GBPs) with glycans are essential in cell adhesion, bacterial/viral infection, and cellular signaling pathways. Experimental characterization of these interactions based on glycan microarrays typically involves (1) labeling GBPs directly with fluorescent reagents before incubation with the microarrays, or (2) labeling GBPs with biotin before the incubation and detecting the captured GBPs after the incubation using fluorescently labeled streptavidin, or (3) detecting the captured GBPs after the incubation using fluorescently labeled antibodies raised against the GBPs. The fluorescent signal is mostly measured ex situ after excess fluorescent materials are washed off. In this study, by using a label-free optical scanner for glycan microarray detection, we measured binding curves of 7 plant lectins to 24 glycans: four β1-4-linked galactosides, three β1-3-linked galactosides, one β-linked galactoside, one α-linked N-acetylgalactosaminide, eight α2-3-linked sialosides, and seven α2-6-linked sialosides. From association and dissociation constants deduced by global-fitting the binding curves, we found that (1) labeling lectins directly with fluorescent agents change binding profiles of lectins, in some cases by orders of magnitude; (2) those lectin-glycan binding reactions characterized with large dissociation rates, though biologically relevant, are easily missed or deemed insignificant in ex situ fluorescence-based assays as most captured lectins are washed off before detection. This study highlights the importance of label-free real-time detection of protein-ligand interactions and the potential pitfall in interpreting fluorescence-based assays for characterization of protein-glycan interactions.
Carbohydrate Research | 2008
Hongzhi Cao; Shengshu Huang; Jiansong Cheng; Yanhong Li; Saddam Muthana; Bryan Son; Xi Chen
The sialyl Lewis x tetrasaccharide with a propylamine aglycon was assembled by chemoselective glycosylation from a p-tolyl thioglycosyl donor obtained from an enzymatically synthesized sialodisaccharide. Combining the advantages of highly efficient enzymatic synthesis of sialoside building blocks, and diverse chemical glycosylation, this chemoenzymatic approach is practical for obtaining complex sialosides and their analogues.
Glycobiology | 2010
Lei Zhang; Kam Lau; Jiansong Cheng; Hai Yu; Yanhong Li; Go Sugiarto; Shengshu Huang; Li Ding; Vireak Thon; Peng George Wang; Xi Chen
Lewis x (Le(x)) and sialyl Lewis x (SLe(x))-containing glycans play important roles in numerous physiological and pathological processes. The key enzyme for the final step formation of these Lewis antigens is alpha1-3-fucosyltransferase. Here we report molecular cloning and functional expression of a novel Helicobacter hepaticus alpha1-3-fucosyltransferase (HhFT1) which shows activity towards both non-sialylated and sialylated Type II oligosaccharide acceptor substrates. It is a promising catalyst for enzymatic and chemoenzymatic synthesis of Le(x), sialyl Le(x) and their derivatives. Unlike all other alpha1-3/4-fucosyltransferases characterized so far which belong to Carbohydrate Active Enzyme (CAZy, http://www.cazy.org/) glycosyltransferase family GT10, the HhFT1 shares protein sequence homology with alpha1-2-fucosyltransferases and belongs to CAZy glycosyltransferase family GT11. The HhFT1 is thus the first alpha1-3-fucosyltransferase identified in the GT11 family.
Glycobiology | 2011
Go Sugiarto; Kam Lau; Hai Yu; Stephanie Vuong; Vireak Thon; Yanhong Li; Shengshu Huang; Xi Chen
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami™ B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.
FEBS Letters | 2014
Nhung Huynh; Yanhong Li; Hai Yu; Shengshu Huang; Kam Lau; Xi Chen; Andrew J. Fisher
Sialyltransferase structures fall into either GT‐A or GT‐B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N‐terminal immunoglobulin (Ig)‐like domain. Photobacterium damselae α2–6‐sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6‐linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP‐3F(a)Neu5Ac contain an immunoglobulin (Ig)‐like domain and adopt the GT‐B sialyltransferase fold. The binary structure reveals a non‐productive pre‐Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig‐domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann‐like domains of the GT‐B fold.