Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengxi Chen is active.

Publication


Featured researches published by Shengxi Chen.


Journal of the American Chemical Society | 2013

Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids.

Shengxi Chen; Nour Eddine Fahmi; Lin Wang; Chandrabali Bhattacharya; Stephen J. Benkovic; Sidney M. Hecht

Two fluorescent amino acids, including the novel fluorescent species 4-biphenyl-l-phenylalanine (1), have been incorporated at positions 17 and 115 of dihydrofolate reductase (DHFR) to enable a study of conformational changes associated with inhibitor binding. Unlike most studies involving fluorescently labeled proteins, the fluorophores were incorporated into the amino acid side chains, and both probes [1 and L-(7-hydroxycoumarin-4-yl)ethylglycine (2)] were smaller than fluorophores typically used for such studies. The DHFR positions were chosen as potentially useful for Förster resonance energy transfer (FRET) measurements on the basis of their estimated separation (17-18 Å) and the expected change in distance along the reaction coordinate. Also of interest was the steric accessibility of the two sites: Glu17 is on the surface of DHFR, while Ile115 is within a folded region of the protein. Modified DHFR I (1 at position 17; 2 at position 115) and DHFR II (2 at position 17; 1 at position 115) were both catalytically competent. However, DHFR II containing the potentially rotatable biphenylphenylalanine moiety at sterically encumbered position 115 was significantly more active than DHFR I. Irradiation of the modified DHFRs at 280 nm effected excitation of 1, energy transfer to 2, and emission by 2 at 450 nm. However, the energy transfer was substantially more efficient in DHFR II. The effect of inhibitor binding was also measured. Trimethoprim mediated concentration-dependent diminution of the emission observed at 450 nm for DHFR II but not for DHFR I. These findings demonstrate that amino acids containing small fluorophores can be introduced into DHFR with minimal disruption of function and in a fashion that enables sensitive monitoring of changes in DHFR conformation.


Bioorganic & Medicinal Chemistry | 2013

Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center

Rumit Maini; Dan T. Nguyen; Shengxi Chen; Larisa M. Dedkova; Sandipan Roy Chowdhury; Rafael Alcala-Torano; Sidney M. Hecht

Ribosomes containing modifications in three regions of 23S rRNA, all of which are in proximity to the ribosomal peptidyltransferase center (PTC), were utilized previously as a source of S-30 preparations for in vitro protein biosynthesis experiments. When utilized in the presence of mRNAs containing UAG codons at predetermined positions+β-alanyl-tRNA(CUA), the modified ribosomes produced enhanced levels of full length proteins via UAG codon suppression. In the present study, these earlier results have been extended by the use of substituted β-amino acids, and direct evidence for β-amino acid incorporation is provided. Presently, five of the clones having modified ribosomes are used in experiments employing four substituted β-amino acids, including α-methyl-β-alanine, β,β-dimethyl-β-alanine, β-phenylalanine, and β-(p-bromophenyl)alanine. The β-amino acids were incorporated into three different positions (10, 18 and 49) of Escherichia coli dihydrofolate reductase (DHFR) and their efficiencies of suppression of the UAG codons were compared with those of β-alanine and representative α-l-amino acids. The isolated proteins containing the modified β-amino acids were subjected to proteolytic digestion, and the derived fragments were characterized by mass spectrometry, establishing that the β-amino acids had been incorporated into DHFR, and that they were present exclusively in the anticipated peptide fragments. DHFR contains glutamic acid in position 17, and it has been shown previously that Glu-C endoproteinase can hydrolyze DHFR between amino acids residues 17 and 18. The incorporation of β,β-dimethyl-β-alanine into position 18 of DHFR prevented this cleavage, providing further evidence for the position of incorporation of the β-amino acid.


Biochemistry | 2012

β-Puromycin Selection of Modified Ribosomes for in Vitro Incorporation of β-Amino Acids

Larisa M. Dedkova; Nour Eddine Fahmi; Rakesh Paul; Melissa C. del Rosario; Liqiang Zhang; Shengxi Chen; Glen Feder; Sidney M. Hecht

Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site. Both functional and X-ray crystallographic data make it clear that the exclusion of β-L-amino acids as participants in protein synthesis is a consequence of the architecture of the ribosomal peptidyltransferase center (PTC). To enable the reorganization of ribosomal PTC architecture through mutagenesis of 23S rRNA, a library of modified ribosomes having modifications in two regions of the 23S rRNA (2057-2063 and 2496-2507 or 2582-2588) was prepared. A dual selection procedure was used to obtain a set of modified ribosomes able to carry out protein synthesis in the presence β-L-amino acids and to provide evidence for the utilization of such amino acids, in addition to α-L-amino acids. β-Puromycin, a putative mimetic for β-aminoacyl-tRNAs, was used to select modified ribosome variants having altered PTC architectures, thus potentially enabling incorporation of β-L-amino acids. Eight types of modified ribosomes altered within the PTC have been selected by monitoring improved sensitivity to β-puromycin in vivo. Two of the modified ribosomes, having 2057AGCGUGA2063 and 2502UGGCAG2507 or 2502AGCCAG2507, were able to suppress UAG codons in E. coli dihydrofolate reductase (DHFR) and scorpion Opisthorcanthus madagascariensis peptide IsCT mRNAs in the presence of β-alanyl-tRNA(CUA).


Journal of the American Chemical Society | 2012

Two pyrenylalanines in dihydrofolate reductase form an excimer enabling the study of protein dynamics.

Shengxi Chen; Lin Wang; Nour Eddine Fahmi; Stephen J. Benkovic; Sidney M. Hecht

Because of the lack of sensitivity to small changes in distance by available FRET pairs (a constraint imposed by the dimensions of the enzyme), a DHFR containing two pyrene moieties was prepared to enable the observation of excimer formation. Pyren-1-ylalanine was introduced into DHFR positions 16 and 49 using an in vitro expression system in the presence of pyren-1-ylalanyl-tRNA(CUA). Excimer formation (λ(ex) 342 nm; λ(em) 481 nm) was observed in the modified DHFR, which retained its catalytic competence and was studied under multiple and single turnover conditions. The excimer appeared to follow a protein conformational change after the H transfer involving the relative position and orientation of the pyrene moieties and is likely associated with product dissociation.


Biochemical and Biophysical Research Communications | 2014

Design and expression of a short peptide as an HIV detection probe

Jamie A. Lines; Zhiqiang Yu; Larisa M. Dedkova; Shengxi Chen

To explore a low-cost novel probe for HIV detection, we designed and prepared a 50-amino acid-length short fusion peptide (FP-50) via Escherichia coli in vivo expression. It was employed as a novel probe to detect HIV-1 gp120 protein. The detectable level of gp120 protein using the FP-50 peptide was approximately 20-200 times lower than previously published methods that used a pair of monoclonal antibodies. Thus, this short peptide is a very promising component for detection of gp120 protein during early stages of HIV infection.


Biochemistry | 2015

Protein Synthesis with Ribosomes Selected for the Incorporation of β-Amino Acids.

Rumit Maini; Sandipan Roy Chowdhury; Larisa M. Dedkova; Basab Roy; Sasha M. Daskalova; Rakesh Paul; Shengxi Chen; Sidney M. Hecht

In an earlier study, β3-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β3-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNACUA activated with each of four methyl-β-alanine isomers (1–4). The modified ribosomes were found to incorporate each of the four isomeric methyl-β-alanines into DHFR but exhibited a preference for incorporation of 3(S)-methyl-β-alanine (β-mAla; 4), i.e., the isomer having the same regio- and stereochemistry as the O-methylated β-tyrosine moiety of β3-puromycin. Also conducted were a selection of clones that are responsive to β2-puromycin and a demonstration of reversal of the regio- and stereochemical preferences of these clones during protein synthesis. These results were incorporated into a structural model of the modified regions of 23S rRNA, which included in silico prediction of a H-bonding network. Finally, it was demonstrated that incorporation of 3(S)-methyl-β-alanine (β-mAla; 4) into a short α-helical region of the nucleic acid binding domain of hnRNP LL significantly stabilized the helix without affecting its DNA binding properties.


Bioorganic & Medicinal Chemistry | 2014

Tryptophan-based Fluorophores for Studying Protein Conformational Changes

Poulami Talukder; Shengxi Chen; C. Tony Liu; Edwin A. Baldwin; Stephen J. Benkovic; Sidney M. Hecht

With the continuing interest in deciphering the interplay between protein function and conformational changes, small fluorescence probes will be especially useful for tracking changes in the crowded protein interior space. Presently, we describe the potential utility of six unnatural amino acid fluorescence donors structurally related to tryptophan and show how they can be efficiently incorporated into a protein as fluorescence probes. We also examine the various photophysical properties of the new Trp analogues, which are significantly redshifted in their fluorescence spectra relative to tryptophan. In general, the Trp analogues were well tolerated when inserted into Escherichia coli DHFR, and did not perturb enzyme activity, although substitution for Trp22 did result in a diminution in DHFR activity. Further, it was demonstrated that D and E at position 37 formed efficient FRET pairs with acridon-2-ylalanine (Acd) at position 17. The same was also true for a DHFR construct containing E at position 79 and Acd at position 17. Together, these findings demonstrate that these tryptophan analogues can be introduced into DHFR with minimal disruption of function, and that they can be employed for the selective study of targeted conformational changes in proteins, even in the presence of unmodified tryptophans.


Molecular Medicine Reports | 2015

Inhibition of microRNA-101 attenuates hypoxia/reoxygenation‑induced apoptosis through induction of autophagy in H9c2 cardiomyocytes

Dongkai Wu; Haihe Jiang; Shengxi Chen; Heng Zhang

Autophagy is a cellular self‑catabolic process responsible for the degradation of proteins and organelles. Autophagy is able to promote cell survival in response to stress, and increased autophagy amongst cardiomyocytes has been identified in conditions of heart failure, starvation and ischemia/reperfusion. However, the detailed regulatory mechanisms underlying autophagy in heart disease have remained elusive. MicroRNAs (miRNAs) have been implicated in the regulation of autophagy in cells under stress. In the present study, the protective effect of miRNA (miR)‑101 on hypoxia/reoxygenation (H/R)‑induced cardiomyocyte apoptosis was investigated. It was revealed that H/R induced apoptosis in H9c2 cardiomyocytes, accompanied by a downregulation of miR‑101 expression. Further investigation identified Ras‑related protein Rab‑5A (RAB5A) as a direct target of miR‑101. RAB5A was previously reported to be involved in autophagy; therefore, the present study further focused on the role of miR‑101 in the regulation of autophagy under H/R and found that the inhibition of miR‑101 attenuated H/R‑induced apoptosis, at least partially, via the induction of autophagy. In conclusion, the results of the present study revealed a beneficial effect of miR‑101 inhibition on H/R‑induced apoptosis in cardiomyocytes, indicating that miR‑101 inhibition may present a potential therapeutic agent in the treatment or prevention of heart diseases.


Organic Letters | 2014

Efficient Asymmetric Synthesis of Tryptophan Analogues Having Useful Photophysical Properties

Poulami Talukder; Shengxi Chen; Pablo M. Arce; Sidney M. Hecht

Two new fluorescent probes of protein structure and dynamics have been prepared by concise asymmetric syntheses using the Schöllkopf chiral auxiliary. The site-specific incorporation of one probe into dihydrofolate reductase is reported. The utility of these tryptophan derivatives lies in their absorption and emission maxima which differ from those of tryptophan, as well as in their large Stokes shifts and high molar absorptivities.


Biochemistry | 2013

Fluorescent Biphenyl Derivatives of Phenylalanine Suitable for Protein Modification

Shengxi Chen; Nour Eddine Fahmi; Chandrabali Bhattacharya; Lin Wang; Yuguang Jin; Stephen J. Benkovic; Sidney M. Hecht

In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from Escherichia coli (ecDHFR) with minimal disruption of protein structure or function, even when the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics. Presently, we describe the synthesis and photophysical characterization of four positional isomers of biphenyl-phenylalanine, all of which were found to exhibit potentially useful fluorescent properties. All four phenylalanine derivatives were used to activate suppressor tRNA transcripts and incorporated into multiple positions of ecDHFR. All phenylalanine derivatives were incorporated with good efficiency into position 16 of ecDHFR and afforded modified proteins that consumed NADPH at rates up to about twice the rate measured for wild type. This phenomenon has been noted on a number of occasions previously and shown to be due to an increase in the off-rate of tetrahydrofolate from the enzyme, altering a step that is normally rate limiting. When introduced into sterically accessible position 49, the four phenylalanine derivatives afforded DHFRs having catalytic function comparable to wild type. The four phenylalanine derivatives were also introduced into position 115 of ecDHFR, which is known to be a folded region of the protein less tolerant of structural alteration. As anticipated, significant differences were noted in the catalytic efficiencies of the derived proteins. The ability of two of the sizable biphenyl-phenylalanine derivatives to be accommodated at position 115 with minimal perturbation of DHFR function is attributed to rotational flexibility about the biphenyl bonds.

Collaboration


Dive into the Shengxi Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Benkovic

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rumit Maini

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoguang Bai

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Basab Roy

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge