Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengyou Shi is active.

Publication


Featured researches published by Shengyou Shi.


Frontiers in Plant Science | 2016

Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litchi

Hong-Na Zhang; Weicai Li; Hui-Cong Wang; Shengyou Shi; Bo Shu; Liqin Liu; Yongzan Wei; Jianghui Xie

Light is a key environmental factor that affects anthocyanin biosynthesis. To enhance our understanding of the mechanisms involved in light-regulated anthocyanin biosynthesis in the pericarp of litchi, we performed transcriptomic analyses on the basis of Illumina sequencing. Fruit clusters were bagged with double-layer Kraft paper bags at 42 days after anthesis. The bags were removed after 2 weeks. Under light conditions, anthocyanins accumulated rapidly in the pericarp. RNA sequences were de novo assembled into 75,935 unigenes with an average length of 913 bp. Approximately 74.5% of unigenes (56,601) were annotated against four public protein databases. A total of 16,622 unigenes that significantly differed in terms of abundance were identified. These unigenes are implicated in light signal perception and transduction, flavonoid biosynthesis, carotenoid biosynthesis, plant hormone signal transduction, and photosynthesis. In photoreceptors, the expression levels of UV RESISTANCE LOCUS 8 (UVR8), Phototropin 2 (PHOT2), Phytochrome B (PHYB), and Phytochrome C (PHYC) increased significantly when the fruits were exposed to light. This result indicated that they likely play important roles in anthocyanin biosynthesis regulation. After analyzed digital gene expression (DGE), we found that the light signal transduction elements of COP1 and COP10 might be responsible for anthocyanin biosynthesis regulation. After the bags were removed, nearly all structural and regulatory genes, such as UDP-glucose: flavonoid-3-O-glucosyltransferase (UFGT), MYB, basic helix-loop-helix (bHLH), and WD40, involved in the anthocyanin biosynthetic pathway were upregulated. In addition to MYB-bHLH-WD40 transcription complex, ELONGATED HYPOCOTYL (HY5), NAM/ATAF/CUC (NAC), homeodomain leucine zipper proteins (ATHBs), and FAR-RED ELONGATED HYPOCOTYL (FHY) possibly participate in light-induced responses. On the basis of DGEs and qRT-PCR validation, we observed a light-induced anthocyanin biosynthesis and regulation pattern in litchi pericarp. This study enhanced our understanding of the molecular mechanisms governing light-induced anthocyanin biosynthesis in litchi pericarp.


International Journal of Molecular Sciences | 2014

De Novo Assembly and Characterization of Pericarp Transcriptome and Identification of Candidate Genes Mediating Fruit Cracking in Litchi chinensis Sonn.

Weicai Li; Jianyang Wu; Hong-Na Zhang; Shengyou Shi; Liqin Liu; Bo Shu; Qingzhi Liang; Jianghui Xie; Yongzan Wei

Fruit cracking has long been a topic of great concern for growers and researchers of litchi (Litchi chinensis Sonn.). To understand the molecular mechanisms underlying fruit cracking, high-throughput RNA sequencing (RNA-Seq) was first used for de novo assembly and characterization of the transcriptome of cracking pericarp of litchi. Comparative transcriptomic analyses were performed on non-cracking and cracking fruits. A total of approximately 26 million and 29 million high quality reads were obtained from the two groups of samples, and were assembled into 46,641 unigenes with an average length of 993 bp. These unigenes can be useful resources for future molecular studies of the pericarp in litchi. Furthermore, four genes (LcAQP, 1; LcPIP, 1; LcNIP, 1; LcSIP, 1) involved in water transport, five genes (LcKS, 2; LcGA2ox, 2; LcGID1, 1) involved in GA metabolism, 21 genes (LcCYP707A, 2; LcGT, 9; Lcβ-Glu, 6; LcPP2C, 2; LcABI1, 1; LcABI5, 1) involved in ABA metabolism, 13 genes (LcTPC, 1; Ca2+/H+ exchanger, 3; Ca2+-ATPase, 4; LcCDPK, 2; LcCBL, 3) involved in Ca transport and 24 genes (LcPG, 5; LcEG, 1; LcPE, 3; LcEXP, 5; Lcβ-Gal, 9; LcXET, 1) involved in cell wall metabolism were identified as genes that are differentially expressed in cracked fruits compared to non-cracked fruits. Our results open new doors to further understand the molecular mechanisms behind fruit cracking in litchi and other fruits, especially Sapindaceae plants.


Electrophoresis | 2014

A rapid and effective method for silver staining of PCR products separated in polyacrylamide gels

Qingzhi Liang; Dingqing Wen; Jianghui Xie; Liqin Liu; Yongzan Wei; Yicheng Wang; Shengyou Shi

With the development of molecular quantitative genetics, particularly, genetic linkage map construction, quantitative trait loci mapping or genes fine mapping and association analysis etc., more and more PCR products separated in polyacrylamide gels need to be silver‐stained. However, conventional silver‐staining procedures are complicated and time‐consuming as they require a lot of preparation and handling of several solutions prior to use. In this study, a simple and rapid protocol for silver staining of PCR products was developed. The number of steps was reduced compared to conventional protocols, thus achieving detection of PCR products in 7 min, saving time and resources. Fixation and staining solution and developing solution in present staining procedure allowed a reutilization for 12 and 8 times, respectively, reducing the cost greatly. Meanwhile, the sensitivity was significantly improved with the improved method and the minimum of 0.097 ng/μL of DNA amount can be detected in denaturing polyacrylamide gel. The protocol developed in this study will facilitate the development of molecular quantitative genetics.


Frontiers in Plant Science | 2016

Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions.

Jianyang Wu; Hong-Na Zhang; Liqin Liu; Weicai Li; Yongzan Wei; Shengyou Shi

Reverse transcription quantitative PCR (RT-qPCR) as the accurate and sensitive method is use for gene expression analysis, but the veracity and reliability result depends on whether select appropriate reference gene or not. To date, several reliable reference gene validations have been reported in fruits trees, but none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3, and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D, and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22°C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits.


PLOS ONE | 2017

Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya

Dengwei Jue; Xuelian Sang; Bo Shu; Liqin Liu; Yicheng Wang; Zhiwei Jia; Yu Zou; Shengyou Shi

Background Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). Methodology/Principal findings In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. Conclusions To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya.


Molecules | 2018

The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses

Dengwei Jue; Xuelian Sang; Liqin Liu; Bo Shu; Yicheng Wang; Jianghui Xie; Chengming Liu; Shengyou Shi

Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes (DlUBCs), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar “Sijimi” (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.


International Journal of Molecular Sciences | 2018

Identification of WRKY Gene Family from Dimocarpus longan and Its Expression Analysis during Flower Induction and Abiotic Stress Responses

Dengwei Jue; Xuelian Sang; Liqin Liu; Bo Shu; Yicheng Wang; Chengming Liu; Jianghui Xie; Shengyou Shi

Longan is an important fruit tree in the subtropical region of Southeast Asia and Australia. However, its blooming and its yield are susceptible to stresses such as droughts, high salinity, and high and low temperature. To date, the molecular mechanisms of abiotic stress tolerance and flower induction in longan have not been elucidated. WRKY transcription factors (TFs), which have been studied in various plant species, play important regulatory roles in plant growth, development, and responses to stresses. However, there is no report about WRKYs in longan. In this study, we identified 55 WRKY genes with the conserved WRKY domain and zinc finger motif in the longan genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the longan WRKY (DlWRKY) family was classified into three major groups (I–III) and five subgroups (IIa–IIe) in group II. Tissue expression analysis showed that 25 DlWRKYs were highly expressed in almost all organs, suggesting that these genes may be important for plant growth and organ development in longan. Comparative RNA-seq and qRT-PCR-based gene expression analysis revealed that 18 DlWRKY genes showed a specific expression during three stages of flower induction in “Sijimi” (“SJ”), which exhibited the “perpetual flowering” (PF) habit, indicating that these 18 DlWRKY genes may be involved in the flower induction and the genetic control of the perpetual flowering trait in longan. Furthermore, the RT-qPCR analysis illustrated the significant variation of 27, 18, 15, 17, 27, and 23 DlWRKY genes under SA (Salicylic acid), MeJA (Methyl Jasmonate), heat, cold, drought, or high salinity treatment, respectively, implicating that they might be stress- or hormone-responsive genes. In summary, we systematically and comprehensively analyzed the structure, evolution, and expression pattern of the DlWRKY genes. The results presented here increase our understanding of the WRKY family in fruit trees and provide a basis for the further elucidation of the biological function of DlWRKY genes in longan.


PLOS ONE | 2017

Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole

Yongzan Wei; Chen Dong; Hong-Na Zhang; Xuewen Zheng; Bo Shu; Shengyou Shi; Weicai Li; Zhong-Jian Liu

In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elongation and bolting delay. Uniconazole spraying has become an important cultivation technique in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism by which uniconazole regulates the complicated developmental processes in litchi remains unclear. This study aimed to determine which signal pathways and genes drive the responses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional activity in inflorescences after uniconazole treatment by Illumina sequencing technology. The global expression profiles of uniconazole-treated litchi inflorescences were compared with those of the control, and 4051 differentially expressed genes were isolated. KEGG pathway enrichment analysis indicated that the plant hormone signal transduction pathway served key functions in the flower developmental stage under uniconazole treatment. Basing on the transcriptional analysis of genes involved in flower development, we hypothesized that uniconazole treatment increases the ratio of female flowers by activating the transcription of pistil-related genes. This phenomenon increases opportunities for pollination and fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment regulates the expression of unigenes involved in numerous transcription factor families, especially the bHLH and WRKY families. These findings suggest that the uniconazole-induced morphological changes in litchi inflorescences are related to the control of hormone signaling, the regulation of flowering genes, and the expression levels of various transcription factors. This study provides comprehensive inflorescence transcriptome data to elucidate the molecular mechanisms underlying the response of litchi flowers to uniconazole treatment and enumerates possible candidate genes that can be used to guide future research in controlling litchi flowering.


Journal of Food Engineering | 2013

Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature

Shengyou Shi; Wei Wang; Liqin Liu; Shijia Wu; Yongzan Wei; Weicai Li


Archive | 2011

Method for regulating flowers and spikes of Feizixiao litchis

Weicai Li; Yongzan Wei; Jianghui Xie; Min Luo; Yingtang Tan; Shengyou Shi; Yicheng Wang

Collaboration


Dive into the Shengyou Shi's collaboration.

Top Co-Authors

Avatar

Liqin Liu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianghui Xie

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongzan Wei

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Weicai Li

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong-Na Zhang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Shu

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dengwei Jue

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Shu

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chengming Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingzhi Liang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge