Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengyuan Ding is active.

Publication


Featured researches published by Shengyuan Ding.


Journal of Neurophysiology | 2011

Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

Shengyuan Ding; Wei Wei; Fu Ming Zhou

GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.


Journal of Neurophysiology | 2011

Kv3-Like Potassium Channels Are Required for Sustained High-Frequency Firing in Basal Ganglia Output Neurons

Shengyuan Ding; Shannon G. Matta; Fu Ming Zhou

The GABA projection neurons in the substantial nigra pars reticulata (SNr) are key output neurons of the basal ganglia motor control circuit. These neurons fire sustained high-frequency, short-duration spikes that provide a tonic inhibition to their targets and are critical to movement control. We hypothesized that a robust voltage-activated K(+) conductance that activates quickly and resists inactivation is essential to the remarkable fast-spiking capability in these neurons. Semi-quantitative RT-PCR (qRT-PCR) analysis on laser capture-microdissected nigral neurons indicated that mRNAs for Kv3.1 and Kv3.4, two key subunits for forming high activation threshold, fast-activating, slow-inactivating, 1 mM tetraethylammonium (TEA)-sensitive, fast delayed rectifier (I(DR-fast)) type Kv channels, are more abundant in fast-spiking SNr GABA neurons than in slow-spiking nigral dopamine neurons. Nucleated patch clamp recordings showed that SNr GABA neurons have a strong Kv3-like I(DR-fast) current sensitive to 1 mM TEA that activates quickly at depolarized membrane potentials and is resistant to inactivation. I(DR-fast) is smaller in nigral dopamine neurons. Pharmacological blockade of I(DR-fast) by 1 mM TEA impaired the high-frequency firing capability in SNr GABA neurons. Taken together, these results indicate that Kv3-like channels mediating fast-activating, inactivation-resistant I(DR-fast) current are critical to the sustained high-frequency firing in SNr GABA projection neurons and hence movement control.


Journal of Neurophysiology | 2015

Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output

Shengyuan Ding; Li Li; Fu Ming Zhou

In Parkinsons disease (PD), the dopamine (DA) neuron loss in the substantia nigra and the DA axon loss in the dorsal striatum are severe, but DA neurons in the ventral tegmental area and DA axons in middle and ventral striatal subregions are less affected. Severe DA loss leads to DA receptor supersensitivity, but it was not known whether the supersensitivity of the DA D1 receptors (D1Rs) on the striatonigral axon terminal is determined by the severe striatal or nigral DA loss. This question is important because these two possibilities affect the extent of the striatonigral terminals with supersensitive D1Rs and hence the strength of the direct pathway output. Here we have investigated this question in the transcription factor Pitx3 mutant mice that have a PD-like DA loss pattern. We found that the presynaptic D1R function was upregulated globally: the D1R-mediated facilitation was equally enhanced for the striatonigral GABA output originated in the dorsal striatum where the DA loss is severe and the somatic D1Rs are supersensitive, and for the striatonigral GABA output originated in the middle and ventral striatum where the DA loss is moderate and the somatic D1Rs are not supersensitive. These results suggest that severe nigral DA loss is sufficient to induce functional upregulation of the D1Rs on striatonigral axon terminals. Consequently, in PD, the globally enhanced D1Rs on striatonigral axon terminals originated in broad striatal subregions may strongly enhance the striatonigral GABA output upon D1R stimulation, potentially contributing to D1R agonisms profound motor-stimulating effects.


Neuroscience Letters | 2012

Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb.

Hong Wei Dong; James C. Davis; Shengyuan Ding; Qiang Nai; Fu Ming Zhou; Matthew Ennis

Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.


Brain Research | 2013

Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice

Li Li; Guozhen Qiu; Shengyuan Ding; Fu Ming Zhou

The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinsons disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements.


Journal of Neurophysiology | 2013

Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice.

Wei Wei; Li Li; Guoliang Yu; Shengyuan Ding; Chengyao Li; Fu Ming Zhou

The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinsons disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.


The Journal of Neuroscience | 2013

Presynaptic Serotonergic Gating of the Subthalamonigral Glutamatergic Projection

Shengyuan Ding; Li Li; Fu Ming Zhou

The GABAergic projection neurons in the substantia nigra pars reticulata (SNr) are key basal ganglia output neurons. The activity of these neurons is critically influenced by the glutamatergic projection from the subthalamic nucleus (STN). The SNr also receives an intense serotonin (5-HT) innervation, raising the possibility that 5-HT may regulate the STN→SNr glutamatergic transmission and the consequent STN-triggered spike firing in SNr neurons. Here we show that 5-HT reduced STN stimulation-evoked long-lasting polysynaptic complex EPSCs in SNr GABA neurons. This inhibitory 5-HT effect was mimicked by the 5-HT1B receptor agonist CP93129 and blocked by the 5-HT1B antagonist NAS-181. 5-HT1A receptor ligands were ineffective. Additionally, 5-HT and CP93129 reduced the frequency but not the amplitude of miniature EPSCs, suggesting a reduced vesicular release. 5-HT and CP93129 also decreased the amplitude but increased the paired pulse ratio of the monosynaptic EPSCs in SNr GABA neurons, indicating a presynaptic 5-HT1B receptor-mediated inhibition of glutamate release. Furthermore, 5-HT and CP93129 inhibited STN-triggered burst firing in SNr GABA neurons, and CP93129s inhibitory effect was strongest when puffed to STN→SNr axon terminals in SNr, indicating a primary role of the 5-HT1B receptors in these axon terminals. Finally, the 5-HT1B receptor antagonist NAS-181 increased the STN-triggered complex EPSCs and burst firing in SNr GABA neurons, demonstrating the effects of endogenous 5-HT. These results suggest that nigral 5-HT, via presynaptic 5-HT1B receptor activation, gates the excitatory STN→SNr projection, reduces burst firing in SNr GABA neurons, and thus may play a critical role in movement control.


Journal of Neurophysiology | 2015

Robust presynaptic serotonin 5-HT1B receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment

Shengyuan Ding; Li Li; Fu Ming Zhou

The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT(1B)Rs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT(1B)Rs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT(1B)R agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT(1B)R-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT(1B)Rs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT(1B)R-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment.


Journal of Neurophysiology | 2017

Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum

Wei Wei; Shengyuan Ding; Fu Ming Zhou

The striatal medium spiny neurons (MSNs) are critical to both motor and cognitive functions. A potential regulator of MSN activity is the GABAergic collateral axonal input from neighboring MSNs. These collateral axon terminals are further under the regulation of presynaptic dopamine (DA) receptors that may become dysfunctional when the intense striatal DA innervation is lost in Parkinsons disease (PD). We show that DA D1 receptor-expressing MSNs (D1-MSNs) and D2 receptor-expressing MSNs (D2-MSNs) each formed high-rate, one-way collateral connections with a homotypic preference in both normal and DA-denervated mouse striatum. Furthermore, whereas the homotypic preference, one-way directionality and the basal inhibitory strength were preserved, DA inhibited GABA release at the D2-MSN→D2-MSN collateral synapse in a supersensitive manner in the DA-denervated striatum. In contrast, for D1-MSN-originated collateral connections, whereas D1 agonism facilitated D1-MSN→D1-MSN collateral inhibition in the normal striatum, this presynaptic D1R facilitation of GABA release was lost in the parkinsonian striatum. These results indicate that in the parkinsonian striatum, dopaminergic treatment can presynaptically weaken the D2-MSN→D2-MSN collateral inhibition and disinhibit the surrounding D2-MSNs, whereas the D1-MSN→D1-MSN collateral inhibition is weakened by the loss of the presynaptic D1 receptor facilitation, disinhibiting the surrounding D1-MSNs. Together, these newly discovered effects can disrupt the MSN circuits in the parkinsonian striatum and may contribute to dopaminergic treatment-induced aberrant motor and nonmotor behaviors in PD.NEW & NOTEWORTHY With the use of a large database, this study establishes that neighboring homotypic striatal spiny projection neurons have a 50% chance to form one-way collateral inhibitory connection, a substantially higher rate than previous estimates. This study also shows that dopamine denervation may alter presynaptic dopamine receptor function such that dopaminergic treatment of Parkinsons disease can weaken the surround inhibition and may reduce the contrast of the striatal outputs, potentially contributing to dopamines profound motor and nonmotor behavioral effects.


Archive | 2015

Pallidusin Projecting Neurons From the Globus + Activating Component of the Delayed Rectifier K

A. Chow; Y. Amarillo; H. Moreno; Shengyuan Ding; Shannon G. Matta; Fu Ming Zhou; Kristen M.S. O'Connell; Scott B. Baver; Kevin A. Hope; Shannon Guyot; Christian Bjørbæk; Catherine C. Kaczorowski

Collaboration


Dive into the Shengyuan Ding's collaboration.

Top Co-Authors

Avatar

Fu Ming Zhou

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Li Li

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Wei Wei

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Guoliang Yu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Shannon G. Matta

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Chengyao Li

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Catherine C. Kaczorowski

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Christian Bjørbæk

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge