Shengyun Chen
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengyun Chen.
Environmental Research Letters | 2012
Wenjie Liu; Shengyun Chen; Xiang Qin; Frank Baumann; Thomas Scholten; Zhaoye Zhou; Weijun Sun; Tongzuo Zhang; Jiawen Ren; Dahe Qin
This study tested the hypothesis that soil organic carbon (SOC) and total nitrogen (TN) spatial distributions show clear relationships with soil properties and vegetation composition as well as climatic conditions. Further, this study aimed to find the corresponding controlling parameters of SOC and TN storage in high-altitude ecosystems. The study was based on soil, vegetation and climate data from 42 soil pits taken from 14 plots. The plots were investigated during the summers of 2009 and 2010 at the northeastern margin of the Qinghai-Tibetan Plateau. Relationships of SOC density with soil moisture, soil texture, biomass and climatic variables were analyzed. Further, storage and vertical patterns of SOC and TN of seven representative vegetation types were estimated. The results show that significant relationships of SOC density with belowground biomass (BGB) and soil moisture (SM) can be observed. BGB and SM may be the dominant factors influencing SOC density in the topsoil of the study area. The average densities of SOC and TN at a depth of 1 m were about 7.72 kg C m(2) and 0.93 kg N m 2. Both SOC and TN densities were concentrated in the topsoil (0-20 cm) and fell exponentially as soil depth increased. Additionally, the four typical vegetation types located in the northwest of the study area were selected to examine the relationship between SOC and environmental factors (temperature and precipitation). The results indicate that SOC density has a negative relationship with temperature and a positive relationship with precipitation diminishing with soil depth. It was concluded that SOC was concentrated in the topsoil, and that SOC density correlates well with BGB. SOC was predominantly influenced by SM, and to a much lower extent by temperature and precipitation. This study provided a new insight in understanding the control of SOC and TN density in the northeastern margin of the Qinghai-Tibetan Plateau.
Environmental Research Letters | 2011
Shuhua Yi; Zhaoye Zhou; Shilong Ren; Ming Xu; Yu Qin; Shengyun Chen; Baisheng Ye
Permafrost on the Qinghai–Tibetan Plateau (QTP) has degraded over the last few decades. Its ecological effects have attracted great concern. Previous studies focused mostly at plot scale, and hypothesized that degradation of permafrost would cause lowering of the water table and drying of shallow soil and then degradation of alpine grassland. However, none has been done to test the hypothesis at basin scale. In this study, for the first time, we investigated the relationships between land surface temperature (LST) and fractional vegetation cover (FVC) in different types of permafrost zone to infer the limiting condition (water or energy) of grassland growth on the source region of Shule River Basin, which is located in the north-eastern edge of the QTP. LST was obtained from MODIS Aqua products at 1 km resolution, while FVC was upscaled from quadrat (50 cm) to the same resolution as LST, using 30 m resolution NDVI data of the Chinese HJ satellite. FVC at quadrat scale was estimated by analyzing pictures taken with a multi-spectral camera. Results showed that (1) retrieval of FVC at quadrat scale using a multi-spectral camera was both more accurate and more efficient than conventional methods and (2) the limiting factor of vegetation growth transitioned from energy in the extreme stable permafrost zone to water in the seasonal frost zone. Our study suggested that alpine grassland would respond differently to permafrost degradation in different types of permafrost zone. Future studies should consider overall effects of permafrost degradation, and avoid the shortcomings of existing studies, which focus too much on the adverse effects.
Biochemical Genetics | 2005
Tao Xia; Shilong Chen; Shengyun Chen; Xue-Jun Ge
Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai–Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai–Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.
Biochemical Genetics | 2005
Shilong Chen; Tao Xia; Shengyun Chen; Yijun Zhou
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.
Environmental Research Letters | 2012
Shengyun Chen; Wenjie Liu; Xiang Qin; Yushuo Liu; Tongzuo Zhang; Kelong Chen; Fengzu Hu; Jiawen Ren; Dahe Qin
Permafrost degradation exhibits striking and profound influences on the alpine ecosystem, and response characteristics of vegetation and soil environment to such degradation inevitably differ during the entire degraded periods. However, up to now, the related research is lacking in the Qinghai?Tibetan Plateau (QTP). For this reason, twenty ecological plots in the different types of permafrost zones were selected in the upstream regions of the Shule River Basin on the northeastern margin of the QTP. Vegetation characteristics (species diversity, community coverage and biomass etc) and topsoil environment (temperature (ST), water content (SW), mechanical composition (SMC), culturable microorganism (SCM), organic carbon (SOC) and total nitrogen (TN) contents and so on), as well as active layer thickness (ALT) were investigated in late July 2009 and 2010. A spatial?temporal shifts method (the spatial pattern that is represented by different types of permafrost shifting to the temporal series that stands for different stages of permafrost degradation) has been used to discuss response characteristics of vegetation and topsoil environment throughout the entire permafrost degradation. The results showed that (1)?ST of 0?40?cm depth and ALT gradually increased from highly stable and stable permafrost (H-SP) to unstable permafrost (UP). SW increased initially and then decreased, and SOC content and the quantities of SCM at a depth of 0?20?cm first decreased and then increased, whereas TN content and SMC showed obscure trends throughout the stages of permafrost degradation with a stability decline from H-SP to extremely unstable permafrost (EUP); (2)?further, species diversity, community coverage and biomass first increased and then decreased in the stages from H-SP to EUP; (3)?in the alpine meadow ecosystem, SOC and TN contents increased initially and then decreased, soil sandy fractions gradually increased with stages of permafrost degradation from substable (SSP) to transitional (TP), and to UP. Meanwhile, SOC/TN storages increased in the former stage, while they decreased in the latter stage. This study indicated that the response characteristics of vegetation and soil environment varied throughout the entire permafrost degradation, and SW was the dominant ecological factor that limited vegetation distribution and growth. Therefore, SSP and TP phases could provide a favourable environment for plant growth, mainly contributing to high SW.
PLOS ONE | 2014
Bin Zhang; Shengyun Chen; Xingyuan He; Wenjie Liu; Qian Zhao; Lin Zhao; Chunjie Tian
Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type.
Environmental Research Letters | 2014
Wenjie Liu; Shengyun Chen; Qian Zhao; Zhizhong Sun; Jiawen Ren; Dahe Qin
The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics.
Ecological Research | 2012
Zengru Wang; Guo-Jing Yang; Shuhua Yi; Shengyun Chen; Zhen Wu; Jian-Yue Guan; Chuancheng Zhao; Qiudong Zhao; Baisheng Ye
Against the background of global climate warming, the relationship between plant communities in high-cold ecosystems and environmental gradients has attracted much attention. We investigated the relationship between the distribution of plant communities and environmental factors in a semi-arid region of the Qinghai-Tibet Plateau. We analyzed the effects of environmental factors on the distribution of plant communities using two-way indicator species analysis and canonical correspondence analysis. The most important factor explaining the distribution of plant communities was the depth of the active layer of permafrost (denoted as PF), followed by soil water content at 40-cm soil depth. There was a strong correlation between these two factors. With changes in the PF, the dominant species in plant communities showed an obvious transition. The indices of species richness and species diversity decreased markedly with increasing PF, whereas biomass and vegetation coverage showed weaker responses to changes in the PF. The distribution structure for plant communities in this area mainly results from changes in the PF. Furthermore, the PF has remarkable and important effects on the characteristics of the plant community.
Scientific Reports | 2018
Wenjie Liu; Shengyun Chen; Junyi Liang; Xiang Qin; Shichang Kang; Jiawen Ren; Dahe Qin
The objective of this study is to investigate the effect of decreased permafrost stability on carbon storage of the alpine ecosystems in the northeastern margin of the Qinghai–Tibet Plateau. During July and August 2013, we selected 18 sites in five types of permafrost (stable, substable, transitional, unstable, and extremely unstable) regions. We measured aboveground phytomass carbon (APC) and soil respiration (SR), soil inorganic carbon (SIC), soil organic carbon (SOC), belowground phytomass carbon, and soil properties down to 50 cm at same types of soils and grasslands. The results indicated that ecosystem carbon in cold calcic soils first decreased and then increased as the permafrost stability declined. Overall, decreasing permafrost stability was expected to reduce ecosystem carbon in meadows, but it was not obvious in swamp meadows and steppes. APC decreased significantly, but SIC and SOC in steppes first decreased and then increased with declining permafrost stability. Soil clay fraction and soil moisture were the controls for site variations of ecosystem carbon. The spatial variations in SR were possibly controlled by soil moisture and precipitation. This meant that alpine ecosystems carbon reduction was strongly affected by permafrost degradation in meadows, but the effects were complex in swamp meadows and steppes.
Botanical Journal of the Linnean Society | 2008
Shengyun Chen; Guili Wu; Dejun Zhang; Qingbo Gao; Yizhong Duan; Faqi Zhang; Shilong Chen