Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengzhan Luo is active.

Publication


Featured researches published by Shengzhan Luo.


Molecular and Cellular Biology | 2006

GRP78/BiP Is Required for Cell Proliferation and Protecting the Inner Cell Mass from Apoptosis during Early Mouse Embryonic Development

Shengzhan Luo; Changhui Mao; Brenda Lee; Amy S. Lee

ABSTRACT GRP78, also known as BiP, is a central regulator of endoplasmic reticulum (ER) homeostasis due to its multiple functional roles in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. ER stress induction of GRP78/BiP represents a major prosurvival arm of the unfolded protein response (UPR). However, the physiological role of GRP78 in development is not known. Using a transgenic approach, we discovered that the Grp78 promoter is activated in both the trophectoderm and inner cell mass (ICM) of embryos at embryonic day 3.5 via a mechanism requiring the ER stress elements. To reveal the function of the GRP78 in vivo, we created a tri-loxP Grp78 mutant allele, which was further crossed with EIIA-cre to create a knockout allele. The Grp78+/− mice, which express 50% of the wild-type level of the GRP78 protein, are viable. Interestingly, the heterozygous Grp78 cells up-regulate the ER proteins GRP94 and protein disulfide isomerase at both the transcript and protein levels, while other UPR targets such as CHOP and XBP-1 are not affected. Further studies revealed that mouse embryonic fibroblasts from Grp78+/− mice are capable of responding to ER stress. However, Grp78−/− embryos that are completely devoid of GRP78 lead to peri-implantation lethality. These embryos do not hatch from the zona pellucida in vitro, fail to grow in culture, and exhibit proliferation defects and a massive increase in apoptosis in the ICM, which is the precursor of embryonic stem cells. These findings provide the first evidence that GRP78 is essential for embryonic cell growth and pluripotent cell survival.


Molecular and Cellular Biology | 2000

ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Y and YY1

Mingqing Li; Peter Baumeister; Binayak Roy; Trevor Phan; Dolly M. Foti; Shengzhan Luo; Amy S. Lee

ABSTRACT ATF6, a member of the leucine zipper protein family, can constitutively induce the promoter of glucose-regulated protein (grp) genes through activation of the endoplasmic reticulum (ER) stress element (ERSE). To understand the mechanism ofgrp78 induction by ATF6 in cells subjected to ER calcium depletion stress mediated by thapsigargin (Tg) treatment, we discovered that ATF6 itself undergoes Tg stress-induced changes. In nonstressed cells, ATF6, which contains a putative short transmembrane domain, is primarily associated with the perinuclear region. Upon Tg stress, the ATF6 protein level dropped initially but quickly recovered with the additional appearance of a faster-migrating form. This new form of ATF6 was recovered as soluble nuclear protein by biochemical fractionation, correlating with enhanced nuclear localization of ATF6 as revealed by immunofluorescence. Optimal ATF6 stimulation requires at least two copies of the ERSE and the integrity of the tripartite structure of the ERSE. Of primary importance is a functional NF-Y complex and a high-affinity NF-Y binding site that confers selectivity among different ERSEs for ATF6 inducibility. In addition, we showed that YY1 interacts with ATF6 and in Tg-treated cells can enhance ATF6 activity. The ERSE stimulatory activity of ATF6 exhibits properties distinct from those of human Ire1p, an upstream regulator of the mammalian unfolded protein response. The requirement for a high-affinity NF-Y site for ATF6 but not human Ire1p activity suggests that they stimulate the ERSE through diverse pathways.


Molecular and Cellular Biology | 2005

Endoplasmic Reticulum Stress Induction of the Grp78/BiP Promoter: Activating Mechanisms Mediated by YY1 and Its Interactive Chromatin Modifiers

Peter Baumeister; Shengzhan Luo; William C. Skarnes; Guangchao Sui; Edward Seto; Yang Shi; Amy S. Lee

ABSTRACT The unfolded protein response is an evolutionarily conserved mechanism whereby cells respond to stress conditions that target the endoplasmic reticulum (ER). The transcriptional activation of the promoter of GRP78/BiP, a prosurvival ER chaperone, has been used extensively as an indicator of the onset of the UPR. YY1, a constitutively expressed multifunctional transcription factor, activates the Grp78 promoter only under ER stress conditions. Previously, in vivo footprinting analysis revealed that the YY1 binding site of the ER stress response element of the Grp78 promoter exhibits ER stress-induced changes in occupancy. Toward understanding the underlying mechanisms of these unique phenomena, we performed chromatin immunoprecipitation analyses, revealing that YY1 only occupies the Grp78 promoter upon ER stress and is mediated in part by the nuclear form of ATF6. We show that YY1 is an essential coactivator of ATF6 and uncover their specific interactive domains. Using small interfering RNA against YY1 and insertional mutation of the gene encoding ATF6α, we provide direct evidence that YY1 and ATF6 are required for optimal stress induction of Grp78. We also discovered enhancement of the ER-stressed induction of the Grp78 promoter through the interaction of YY1 with the arginine methyltransferase PRMT1 and evidence of its action through methylation of the arginine 3 residue on histone H4. Furthermore, we detected ER stress-induced binding of the histone acetyltransferase p300 to the Grp78 promoter and histone H4 acetylation. A model for the ER stress-mediated transcription factor binding and chromatin modifications at the Grp78 promoter leading to its activation is proposed.


The EMBO Journal | 2004

ATF6 modulates SREBP2-mediated lipogenesis

Lingfang Zeng; Min Lu; Kazutoshi Mori; Shengzhan Luo; Amy S. Lee; Yi Zhu; John Y.-J. Shyy

Activating transcription factor 6 (ATF6) and sterol regulatory element‐binding proteins (SREBPs) are activated by proteolytic cleavage. The ensuing nuclear translocation of their N‐termini (i.e., ATF6(N) and SREBP(N)) activates the respective target genes involved in unfolded protein response and lipogenesis. Here, we report that glucose deprivation activated ATF6 but suppressed the SREBP2‐regulated transcription. Overexpression of ATF6(N) had similar inhibitory effects on SREBP2‐targeted genes. The blockade of ATF6 cleavage by BiP/grp78 reversed this inhibitory effect. GST pull‐down and immunoprecipitation assays revealed that ATF6(N) bound to SREBP2(N). Deletion analysis of the various functional domains of ATF6 indicated that the interaction was through its leucine‐zipper domain. Chromatin immunoprecipitation assays revealed that ATF6(N) formed a complex with the SRE‐bound SREBP2(N). The attenuated transcriptional activity of SREBP2 was due, in part, to the recruitment of HDAC1 to the ATF6–SREBP2 complex. As a functional consequence, the lipogenic effect of SREBP2(N) in liver cells was suppressed by ATF6(N). Our results provide a novel mechanism by which ATF6 antagonizes SREBP2 to regulate the homeostasis of lipid and glucose.


Diabetes | 2010

Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance

Risheng Ye; Dae Young Jung; John Y. Jun; Jianze Li; Shengzhan Luo; Hwi Jin Ko; Jason K. Kim; Amy S. Lee

OBJECTIVE To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. RESEARCH DESIGN AND METHODS Male Grp78+/− mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-euglycemic clamps. Molecular mechanism was explored via immunoblotting and tissue culture manipulation. RESULTS Grp78 heterozygosity increases energy expenditure and attenuates HFD-induced obesity. Grp78+/− mice are resistant to diet-induced hyperinsulinemia, liver steatosis, white adipose tissue (WAT) inflammation, and hyperglycemia. Hyperinsulinemic-euglycemic clamp studies revealed that Grp78 heterozygosity improves glucose metabolism independent of adiposity and following an HFD increases insulin sensitivity predominantly in WAT. As mechanistic explanations, Grp78 heterozygosity in WAT under HFD stress promotes adaptive unfolded protein response (UPR), attenuates translational block, and upregulates ER degradation-enhancing α-mannosidase–like protein (EDEM) and ER chaperones, thus improving ER quality control and folding capacity. Further, overexpression of the active form of ATF6 induces protective UPR and improves insulin signaling upon ER stress. CONCLUSIONS HFD-induced obesity and type 2 diabetes are improved in Grp78+/− mice. Adaptive UPR in WAT could contribute to this improvement, linking ER homeostasis to energy balance and glucose metabolism.


Cell Death & Differentiation | 2010

Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis

Miao Wang; Risheng Ye; Ernesto Barron; Peter Baumeister; Changhui Mao; Shengzhan Luo; Yong Fu; Biquan Luo; Louis Dubeau; David R. Hinton; Amy S. Lee

Neurodegenerative diseases are often associated with dysfunction in protein quality control. The endoplasmic reticulum (ER), a key site for protein synthesis, senses stressful conditions by activating the unfolded protein response (UPR). In this study we report the creation of a novel mouse model in which GRP78/BiP, a major ER chaperone and master regulator of UPR, is specifically eliminated in Purkinje cells (PCs). GRP78-depleted PCs activate UPR including the induction of GRP94, PDI, CHOP and GADD34, feedback suppression of eIF2α phosphorylation and apoptotic cell death. In contrast to current models of protein misfolding in which an abnormal accumulation of ubiquitinated protein is prominent, cytosolic ubiquitin staining is dramatically reduced in GRP78-null PCs. Ultrastructural evaluation reveals that the ER shows prominent dilatation with focal accumulation of electron-dense material within the ER. The mice show retarded growth and severe motor coordination defect by week 5 and cerebellar atrophy by week 13. Our studies uncover a novel link between GRP78 depletion and reduction in cytosolic ubiquitination and establish a novel mouse model of accelerated cerebellar degeneration with basic and clinical applications.


Biochemical Journal | 2002

Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation

Shengzhan Luo; Amy S. Lee

Malfolded protein formation and perturbance of calcium homoeostasis results in the induction of the endoplasmic reticulum (ER) chaperone protein, namely the 78 kDa glucose-regulated protein (GRP78)/immunoglobulin heavy-chain binding protein. Various ER stress inducers can activate grp78, but signal transduction mechanisms are not well understood. We report in the present study that the induction of endogenous grp78 mRNA by the amino acid analogue azetidine (AzC) requires the integrity of a signal transduction pathway mediated by p38 mitogen-activated protein kinase (p38 MAPK). In contrast, induction of grp78 by thapsigargin that depletes the ER calcium storage can occur even when the p38 MAPK pathway is blocked. Treatment of cells with AzC results in the sustained activation of p38 MAPK. We identified an ER transmembrane activating transcription factor 6 (ATF6) as a target of p38 MAPK phosphorylation in AzC-treated cells. ATF6 undergoes proteolytic cleavage on AzC treatment, releasing a nuclear form that is an activator of the grp78 promoter. We show here that constitutively active mitogen-activated protein kinase kinase 6, a selective p38 MAPK activator, enhances the ability of the nuclear form of ATF6 to transactivate the grp78 promoter. Our results provide direct evidence that different ER stress inducers use diverse pathways to activate grp78 and that in addition to activation by proteolytic cleavage, ATF6 undergoes specific ER stress-induced phosphorylation. We propose that phosphorylation of ATF6 is a novel mechanism for augmenting its potential as a transcription activator.


Journal of Endocrinology | 2011

Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes

Risheng Ye; Min Ni; Miao Wang; Shengzhan Luo; Genyuan Zhu; Robert H. Chow; Amy S. Lee

The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca(2)(+) channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.


Journal of Biological Chemistry | 2004

Underglycosylation of ATF6 as a Novel Sensing Mechanism for Activation of the Unfolded Protein Response

Min Hong; Shengzhan Luo; Peter Baumeister; Jen-ming Huang; Raveen K. Gogia; Mingqing Li; Amy S. Lee


Nature Medicine | 2004

Transgenic mouse model for monitoring endoplasmic reticulum stress in vivo

Changhui Mao; Dezheng Dong; Edward Little; Shengzhan Luo; Amy S. Lee

Collaboration


Dive into the Shengzhan Luo's collaboration.

Top Co-Authors

Avatar

Amy S. Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Peter Baumeister

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Changhui Mao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Risheng Ye

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Miao Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mingqing Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Binayak Roy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Biquan Luo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Brenda Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Dae Young Jung

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge