Shengzhuang Tang
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengzhuang Tang.
Organic Letters | 2010
Baohua Huang; Ankur Desai; Shengzhuang Tang; Thommey P. Thomas; James R. Baker
Preparation of a novel c(RGDyK) targeted SN38 prodrug incorporating an indolequinone structure for bioreductively triggered drug release is described. This design yields a prodrug that targets surface molecules on tumor cells (alpha(v)beta(3) integrins) and releases drug under bioreductive conditions. There are three moieties in the prodrug design, namely a therapeutic drug SN38, an indolequinone structure serving as a drug releasing trigger, and an alpha(v)beta(3) integrin targeting peptide c(RGDyK). Preliminary studies showed that SN38 is released in the presence of a bioreductive enzyme (DT-diaphorase).
Bioorganic & Medicinal Chemistry Letters | 2012
Baohua Huang; Jolanta F. Kukowska-Latallo; Shengzhuang Tang; Hong Zong; Kali B. Johnson; Ankur Desai; Chris L. Gordon; Pascale R. Leroueil; James R. Baker
The facile conjugation of three azido modified functionalities, namely a therapeutic drug (methotrexate), a targeting moiety (folic acid), and an imaging agent (fluorescein) with a G5 PAMAM dendrimer scaffold with cyclooctyne molecules at the surface through copper-free click chemistry is reported. Mono-, di-, and tri-functional PAMAM dendrimer conjugates can be obtained via combinatorial mixing of different azido modified functionalities simultaneously or sequentially with the dendrimer platform. Preliminary flow cytometry results indicate that the folic acid targeted nanoparticles are efficiently binding with KB cells.
Small | 2015
Pamela T. Wong; Dexin Chen; Shengzhuang Tang; Sean A. Yanik; Michael Payne; Jhindan Mukherjee; Alexa Coulter; Kenny Tang; Ke Tao; Kang Sun; James R. Baker; Seok Ki Choi
Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.
Bioorganic & Medicinal Chemistry Letters | 2013
Sascha N. Goonewardena; Jeremy D. Kratz; Hong Zong; Ankur Desai; Shengzhuang Tang; Sarah B. Emery; James R. Baker; Baohua Huang
We have previously shown that methotrexate (MTX) conjugated to a cancer-specific poly amido amine (PAMAM) dendrimer has a higher therapeutic index than MTX alone. Unfortunately, these therapeutics have been difficult to advance because of the complicated syntheses and an incomplete understanding of the dendrimer properties. We wished to address these obstacles by using copper-free click chemistry to functionalize the dendrimer scaffolds and to exploring the effects of two dendrimer properties (the targeting ligand and drug linkage) on cytotoxicity. We conjugated either ester or amide-linker modified MTX to dendrimer scaffolds with or without folic acid (FA). Because of multivalency, the FA and MTX functionalized dendrimers had similar capacities to target the folate receptor on cancer cells. Additionally, we found that the ester- and amide-linker modified MTX compounds had similar cytotoxicity but the dendrimer-ester MTX conjugates were much more cytotoxic than the dendrimer-amide MTX conjugates. These results clarify the impact of these properties on therapeutic efficacy and will allow us to design more effective polymer therapeutics.
Molecular BioSystems | 2015
Tannaz Faal; Pamela T. Wong; Shengzhuang Tang; Alexa Coulter; Yumay Chen; Christina H. Tu; James R. Baker; Seok Ki Choi; Matthew A. Inlay
The tamoxifen inducible Cre-ER/loxP system provides tissue specific temporal control of gene recombination events, and can be used to induce expression of reporter genes (e.g. GFP, LacZ) for lineage tracing studies. Cre enzyme fused with estrogen receptor (Cre-ER) is released upon tamoxifen binding, resulting in permanent activation of reporter genes within cells and their progeny. Tamoxifen and its active metabolite, hydroxytamoxifen (4OHT) diffuses rapidly in vivo, making it difficult to restrict labeling to specific locations. In this study, we developed a photocaged 4OHT molecule by covalently attaching 4OHT to an ortho-nitrobenzyl (ONB1) group, rendering 4OHT inactive. Exposure to UV radiation cleaves the bond between ONB1 and 4OHT, freeing the 4OHT to bind Cre-ER to result in downstream genetic recombination and reporter activation. We show that caged ONB1-4OHT crosses the cell membrane and uncages after short UV exposure, resulting in Cre-driven genetic recombination that can be localized to specific regions or tissues. ONB1-4OHT can provide spatial control of reporter activation and be adapted with any existing Cre-ER/loxP based system.
Bioorganic & Medicinal Chemistry Letters | 2009
Baohua Huang; Shengzhuang Tang; Ankur Desai; Xue Min Cheng; Alina Kotlyar; Abraham Van Der Spek; Thommey P. Thomas; James R. Baker
Hypoxia is known to occur in tissues in response to narcotic analgesic therapy using as a result of respiratory depression. The aim of this study was to synthesize a narcotic antagonist pro-drug that can be activated by tissue hypoxia to prevent the damage associated with respiratory depression. We synthesized three different pro-drugs of the narcotic antagonist naloxone utilizing indolequinone as the hypoxia-sensitive moiety. The indolequinone structure in the pro-drugs was designed to have an open reactive point at the N-1 position offering the possibility of further conjugation with macromolecules to modify the bio-availability of these pro-drugs in vivo. A pro-drug (labeled 1) where naloxone and the indolequinone moiety were linked through a carbonate bond was rapidly hydrolyzed in phosphate buffered saline. However, two additional pro-drugs (labeled 2 and 3) having carbamate linkers were stable in phosphate buffered saline for 24h. The reductive release of naloxone from the pro-drugs was achieved in the presence of the bio-reductive enzyme DT-Diaphorase, with about 80% release occurring from the two pro-drugs in 24h. More than 99% of naloxone was released from pro-drug 2 in 30% human plasma, however the release only occurred under hypoxic conditions. This system provides a potential means for feedback control to counter critical respiratory depression induced by narcotic analgesics.
Journal of Materials Chemistry B | 2015
Pamela T. Wong; Shengzhuang Tang; Kenny Tang; Alexa Coulter; Jhindan Mukherjee; Kristina Gam; James R. Baker; Seok Ki Choi
We report on the practicality of a heteromultivalent design strategy for a nanoplatform that targets lipopolysaccharide molecules (LPS) present on the surface of Gram-negative bacteria. This design is based on the conjugation of a poly(amido amine) (PAMAM) dendrimer with two types of ligands, each having distinct affinities: (i) polymyxin B (PMB) as a primary high affinity ligand; (ii) a PMB-mimicking dendritic branch as an auxiliary low affinity ligand. Co-conjugation of these two ligands maximizes the efficiency of the primary ligand even when the primary ligand is present at a low valency on the nanoplatform (mean nPMB≈ 1). By performing surface plasmon resonance studies using a LPS-immobilized cell wall model, we identified an ethanolamine (EA)-terminated branch as the auxiliary ligand that promotes binding avidity via heteromultivalent association. PMB conjugation of the dendrimer with excess EA branches led to LPS avidity two orders of magnitude greater than unconjugated PMB. Such tight binding observed by SPR corresponded well with adsorption to E. coli cells and with potent bactericidal activity in vitro.
Journal of Physical Chemistry B | 2015
Abigail N. Leistra; Jong Hyun Han; Shengzhuang Tang; Bradford G. Orr; Mark M. Banaszak Holl; Seok Ki Choi; Kumar Sinniah
Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.
ACS Chemical Biology | 2017
Pamela T. Wong; Edward W. Roberts; Shengzhuang Tang; Jhindan Mukherjee; Jayme Cannon; Alyssa Nip; Kaitlin Corbin; Matthew F. Krummel; Seok Ki Choi
The use of coumarin caged molecules has been well documented in numerous photocaging applications including for the spatiotemporal control of Cre-estrogen receptor (Cre-ERT2) recombinase activity. In this article, we report that 4-hydroxytamoxifen (4OHT) caged with coumarin via a conventional ether linkage led to an unexpected photo-Claisen rearrangement which significantly competed with the release of free 4OHT. The basis for this unwanted reaction appears to be related to the coumarin structure and its radical-based mechanism of uncaging, as it did not occur in ortho-nitrobenzyl (ONB) caged 4OHT that was otherwise linked in the same manner. In an effort to perform design optimization, we introduced a self-immolative linker longer than the ether linkage and identified an optimal linker which allowed rapid 4OHT release by both single-photon and two-photon absorption mechanisms. The ability of this construct to actively control Cre-ERT2 mediated gene modifications was investigated in mouse embryonic fibroblasts (MEFs) in which the expression of a green fluorescent protein (GFP) reporter dependent gene recombination was controlled by 4OHT release and measured by confocal fluorescence microscopy and flow cytometry. In summary, we report the implications of this photo-Claisen rearrangement in coumarin caged compounds and demonstrate a rational linker strategy for addressing this unwanted side reaction.
ChemBioChem | 2017
Pamela T. Wong; Shengzhuang Tang; Jayme Cannon; Jhindan Mukherjee; Danielle Isham; Kristina Gam; Michael Payne; Sean A. Yanik; James R. Baker; Seok Ki Choi
Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho‐nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6‐nitroverataldehyde, three drug–fluorophore conjugates were synthesized: Taxol‐TNB‐fluorescein, Taxol‐TNB‐coumarin, and doxorubicin‐TNB‐coumarin, and long‐wavelength UVA light‐triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell‐based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real‐time monitoring of drug activation at the delivery site.