Sher Hayat Khan
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sher Hayat Khan.
Journal of Molecular Neuroscience | 2015
Syed Zahid Ali Shah; Deming Zhao; Sher Hayat Khan; Lifeng Yang
The aggregation of disease-specific misfolded proteins resulting in endoplasmic reticulum stress is associated with early pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum stress sensors. All eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by signaling an adaptive pathway termed as unfolded protein response (UPR). Recently, the focus of research shifted from work on specific proteins as pathogenesis in these neurodegenerative diseases towards a more specific generic pathway known as UPR. ER is a major organelle for protein quality control, and cellular stress disrupts normal functioning of ER. The UPR acts as a protective mechanism during endoplasmic reticulum stress, but persistent long-term stress triggers UPR-mediated apoptotic pathways ultimately leading to cell death. Here in this review, we will briefly summarize the molecular events of endoplasmic reticulum stress-associated UPR signaling pathways and their potential therapeutic role in neurodegenerative diseases.
Journal of Molecular Neuroscience | 2015
Syed Zahid Ali Shah; Deming Zhao; Sher Hayat Khan; Lifeng Yang
Dysregulated calcium signaling and accumulation of aberrant proteins causing endoplasmic reticulum stress are the early sign of intra-axonal pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum. The fate of the cell to undergo apoptosis is controlled by Ca2+ signaling and dynamics at the level of the endoplasmic reticulum. Endoplasmic reticulum resident inositol 1,4,5-trisphosphate receptors (IP3R) play a pivotal role in cell death signaling by mediating Ca2+ flux from the endoplasmic reticulum into the cytosol and mitochondria. Hence, many prosurvival and prodeath signaling pathways and proteins affect Ca2+ signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. Here, in this review, we summarize the regulatory mechanisms of inositol triphosphate receptors in calcium regulation and initiation of apoptosis during unfolded protein response.
Neurotherapeutics | 2017
Syed Zahid Ali Shah; Deming Zhao; Giulio Taglialatela; Sher Hayat Khan; Tariq Hussain; Haodi Dong; Mengyu Lai; Xiangmei Zhou; Lifeng Yang
Prion infections of the central nervous system (CNS) are characterized by initial reactive gliosis followed by overt neuronal death. Gliosis is likely to be caused initially by the deposition of misfolded, proteinase K-resistant, isoforms (termed PrPSc) of the normal cellular prion protein (PrPc) in the brain. Proinflammatory cytokines and chemokines released by PrPSc-activated glia and stressed neurons may also contribute directly or indirectly to the disease development by enhancing gliosis and inducing neurotoxicity. Recent studies have illustrated that early neuroinflammation activates nuclear factor of activated T cells (NFAT) in the calcineurin signaling cascade, resulting in nuclear translocation of nuclear factor kappa B (NF-κB) to promote apoptosis. Hence, useful therapeutic approaches to slow down the course of prion disease development should control early inflammatory responses to suppress NFAT signaling. Here we used a hamster model of prion diseases to test, for the first time, the neuroprotective and NFAT-suppressive effect of a second-generation semisynthetic tetracycline derivative, minocycline, versus a calcineurin inhibitor, FK506, with known NFAT suppressive activity. Our results indicate that prolonged treatment with minocycline, starting from the presymptomatic stage of prion disease was more effective than FK506 given either during the presymptomatic or symptomatic stage of prion disease. Specifically, minocycline treatment reduced the expression of the astrocyte activation marker glial fibrillary acidic protein and of the microglial activation marker ionized calcium-binding adapter molecule-1, subsequently reducing the level of proinflammatory cytokines interleukin 1β and tumor necrosis factor-α. We further found that minocycline and FK506 treatment inhibited mitogen-activated protein kinase p38 phosphorylation and NF-κB nuclear translocation in a caspase-dependent manner, and enhanced phosphorylated cyclic adenosine monophosphate response element-binding protein and phosphorylated Bcl2-associated death promoter levels to reduce cognitive impairment and apoptosis. Taken together, our results indicate that minocycline is a better choice for prolonged use in prion diseases and encourage its further clinical development as a possible treatment for this disease.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2015
Yang Zhou; Deming Zhao; Ruichao Yue; Sher Hayat Khan; Syed Zahid Ali Shah; Xiaomin Yin; Lifeng Yang; Zhongqiu Zhang; Xiangmei Zhou
Mycobacterium bovis is the causative agent of tuberculosis in cattle. Infection of macrophages with M. bovis leads to the activation of the “nucleotide binding and oligomerization, leucine-rich repeat and pyrin domains-containing protein 3” (NLRP3) and “absent in melanoma 2” (AIM2) inflammasomes, which in turn triggers release of the proinflammatory cytokine interleukin-1β (IL-1β) that contributes to bacterial clearance and plays a crucial role in the host defense. However, NLRP3 and AIM2 inflammasome activation is influenced by several factors and how IL-1β secretion by M. bovis-infected macrophages is regulated via the inflammasome pathway remains unclear. Here we found that IL-1β secretion and pro-IL-1β protein accumulation were inhibited in THP-1 macrophages upon exposure to the virulent M. bovis Beijing strain in the presence of high K+ concentrations, cycloheximide (a protein synthesis inhibitor) and PR-619 (a deubiquitinating enzyme inhibitor). Scavenging reactive oxygen species (ROS) induced by N-acetylcysteine reduced IL-1β release independent of the mitochondrial permeability transition. Collectively, our results suggest that IL-1β secretion by M. bovis-infected THP-1 macrophages is reduced by high extracellular K+ concentration, inhibition of new protein synthesis, deubiquitination, and ROS generation.
Cellular and Molecular Neurobiology | 2017
Sher Hayat Khan; Deming Zhao; Syed Zahid Ali Shah; Mohammad Farooque Hassan; Ting Zhu; Zhiqi Song; Xiangmei Zhou; Lifeng Yang
Transmissible spongiform encephalopathies (TSEs) are caused by the accumulation of the abnormal prion protein scrapie (PrPSc). Prion protein aggregation, misfolding, and cytotoxicity in the brain are the major causes of neuronal dysfunction and ultimate neurodegeneration in all TSEs. Parkin, an E3 ubiquitin ligase, has been studied extensively in all major protein misfolding aggregating diseases, especially Parkinson’s disease and Alzheimer’s disease, but the role of parkin in TSEs remains unknown. Here we investigated the role of parkin in a prion disease cell model in which neuroblastoma2a (N2a) cells were treated with prion peptide PrP106–126. We observed a gradual decrease in the soluble parkin level upon treatment with PrP106–126 in a time-dependent manner. Furthermore, endogenous parkin colocalized with FITC-tagged prion fragment106–126. Overexpression of parkin in N2a cells via transfection repressed apoptosis by enhancing autophagy. Parkin-overexpressing cells also showed reductions in apoptotic BAX translocation to the mitochondria and cytochrome c release to the cytosol, which ultimately inhibited activation of proapoptotic caspases. Taken together, our findings reveal a parkin-mediated cytoprotective mechanism against PrP106–126 toxicity, which is a novel potential therapeutic target for treating prion diseases.
Acta Biochimica et Biophysica Sinica | 2014
Ting Zhu; Sher Hayat Khan; Deming Zhao; Lifeng Yang
The hallmark of prion disease is the accumulation of misfolded protein PrP(Sc), which is toxic to neuronal cells. The proteasome system is responsible for the rapid, precise, and timely degradation of proteins and plays an important role in cellular protein quality control. Increasing evidence indicates impaired activity of proteasomes in prion diseases. Accumulated PrP(Sc) can directly or indirectly affect proteasome activity. Misfolded protein may influence the assembly and activity of 19S regulatory particle, or post-translational modification of 20S proteasome, which may adversely affect the protein degradation activity of proteasomes. In this review, we summarized the recent findings concerning the possible regulation of proteasomes in prion and other neurodegenerative diseases. The proteasome system may enhance its degradation activity by changing its structure, and this activity can also be increased by related chaperones when neuronal cells are subject to stress. When the proteasome system is inhibited, degradation of protein aggregates via autophagy may increase as a compensatory system. It is possible that a balance exists between the proteasome and autophagy in vivo; when one is impaired, the activity of the other may increase to maintain homeostasis. However, more studies are needed to elucidate the relationship between the proteasome system and autophagy.
Journal of Molecular Neuroscience | 2013
XiuJin Yang; Lifeng Yang; Xiangmei Zhou; Sher Hayat Khan; Huinuan Wang; Xiaomin Yin; Zhen Yuan; Zhiqi Song; Wenyu Wu; Deming Zhao
Under the “protein-only” hypothesis, prion-based diseases are proposed to result from an infectious agent that is an abnormal isoform of the prion protein in the scrapie form, PrPSc. However, since PrPSc is highly insoluble and easily aggregates in vivo, this view appears to be overly simplistic, implying that the presence of PrPSc may indirectly cause neurodegeneration through its intermediate soluble form. We generated a neurotoxic PrP dimer with partial pathogenic characteristics of PrPSc by protein misfolding cyclic amplification in the presence of 1-palmitoyl-2-oleoylphosphatidylglycerol consisting of recombinant hamster PrP (23–231). After intracerebral injection of the PrP dimer, wild-type hamsters developed signs of neurodegeneration. Clinical symptoms, necropsy findings, and histopathological changes were very similar to those of transmissible spongiform encephalopathies. Additional investigation showed that the toxicity is primarily related to cellular apoptosis. All results suggested that we generated a new neurotoxic form of PrP, PrP dimer, which can cause neurodegeneration. Thus, our study introduces a useful model for investigating PrP-linked neurodegenerative mechanisms.
Veterinary Record | 2013
Wenqiang Gan; Xiangmei Zhou; H. Yang; H. Chen; Junwen Qiao; Sher Hayat Khan; Lifeng Yang; Xiaomin Yin; Deming Zhao
The infection status of cattle for bovine tuberculosis (bTB) was determined by real-time PCR, comparing the levels of IFN-γ mRNA in blood cultures stimulated with either bovine or avian tuberculin with non-stimulated control (phosphate buffer saline, PBS) blood culture. Totally, 137 cattle were tested to validate the assay, in which 54 were IFN-γ real-time quantitative PCR (RT-qPCR) positive, while the remaining 83 were found negative. Meanwhile, the IFN-γ ELISA test was carried out using the Bovigam IFN-γ detection ELISA kit and these results were used as a standard. The results of the single intradermal tuberculin tests (SIDT) and IFN-γ RT-qPCR tests were compared and revealed that the RT-qPCR correlated better with the ELISA and its accuracy was higher than SIDT. This indicates the RT-qPCR is a useful diagnostic method for bTB in cattle. However, several limitations remain for our approach, such as lack of a TB lesions or postmortem test results as a gold standard. Further improvements should be made in the future to increase accuracy of diagnosis of bTB in cattle.
Prion | 2016
Mohammad Farooque Hassan; Sher Hayat Khan; Masroor Ellahi Babar; Lifeng Yang; Tariq Ali; Jamal Muhammad Khan; Syed Zahid Ali Shah; Xiangmei Zhou; Tanveer Hussain; Ting Zhu; Tariq Hussain; Deming Zhao
ABSTRACT The association between caprine PrP gene polymorphisms and its susceptibility to scrapie has been investigated in current years. As the ORF of the PrP gene is extremely erratic in different breeds of goats, we studied the PrP gene polymorphisms in 80 goats which belong to 11 Pakistani indigenous goat breeds from all provinces of Pakistan. A total of 6 distinct polymorphic sites (one novel) with amino acid substitutions were identified in the PrP gene which includes 126 (A -> G), 304 (G -> T), 379 (A -> G), 414 (C -> T), 428 (A -> G) and 718 (C -> T). The locus c.428 was found highly polymorphic in all breeds as compare to other loci. On the basis of these PrP variants NJ phylogenetic tree was constructed through MEGA6.1 which showed that all goat breeds along with domestic sheep and Mauflon sheep appeared as in one clade and sharing its most recent common ancestors (MRCA) with deer species while Protein analysis has shown that these polymorphisms can lead to varied primary, secondary and tertiary structure of protein. Based on these polymorphic variants, genetic distance, multidimensional scaling plot and principal component analyses revealed the clear picture regarding greater number of substitutions in cattle PrP regions as compared to the small ruminant species. In particular these findings may pinpoint the fundamental control over the scrapie in Capra hircus on genetic basis.
Diseases of Aquatic Organisms | 2017
Zhiqi Song; Ruichao Yue; Yanming Sun; Chunfa Liu; Sher Hayat Khan; Chaosi Li; Ying Zhao; Xiangmei Zhou; Lifeng Yang; Deming Zhao
A captive 8 yr old male bottlenose dolphin Tursiops truncatus succumbed to septicemia with multisystemic inflammation including suppurative enteritis, encephalitis, and pneumonia with chronic pancreatitis. A pure culture of beta-hemolytic, catalase- and oxidase-negative, Gram-positive cocci was isolated from the hilar lymph nodes and pancreas. The isolate was identified by 16S rDNA sequencing as Streptococcus iniae. Histological examination of the digestive system revealed a mixed infection of both bacteria and fungus. Recognized as a pathogen in fish, dolphins, and humans, this is the first report of S. iniae in a dolphin in mainland China. As the number of managed animals in oceanariums is increasing, so is the frequency of contact with fish used as food for marine mammals and humans, highlighting the importance of education and appropriate personal protective protocols to minimize the risk of transmission. An understanding of marine mammal infectious disease organisms is essential to ensuring the health of marine mammals and humans coming into contact with such animals and their food. This study illustrates a systematic clinical, microbiological, and pathological investigation into a septicemic bottlenose dolphin infected with S. iniae. Our findings provide useful information for those involved in the diagnosis and control of infectious diseases in marine mammals and offer insight into an important zoonotic pathogen.