Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheri J.Y. Mizumori is active.

Publication


Featured researches published by Sheri J.Y. Mizumori.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior

Larry S. Zweifel; Jones G. Parker; Collin J. Lobb; Aundrea Rainwater; Valerie Z. Wall; Jonathan P. Fadok; Martin Darvas; Min J. Kim; Sheri J.Y. Mizumori; Carlos A. Paladini; Paul E. M. Phillips; Richard D. Palmiter

Midbrain dopamine (DA) neurons fire in 2 characteristic modes, tonic and phasic, which are thought to modulate distinct aspects of behavior. However, the inability to selectively disrupt these patterns of activity has hampered the precise definition of the function of these modes of signaling. Here, we addressed the role of phasic DA in learning and other DA-dependent behaviors by attenuating DA neuron burst firing and subsequent DA release, without altering tonic neural activity. Disruption of phasic DA was achieved by selective genetic inactivation of NMDA-type, ionotropic glutamate receptors in DA neurons. Disruption of phasic DA neuron activity impaired the acquisition of numerous conditioned behavioral responses, and dramatically attenuated learning about cues that predicted rewarding and aversive events while leaving many other DA-dependent behaviors unaffected.


Behavioral Neuroscience | 2002

Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning

Michael E. Ragozzino; Katharine E. Ragozzino; Sheri J.Y. Mizumori; Raymond P. Kesner

These experiments examined the effects of dorsomedial striatal inactivation on the acquisition of a response and visual cue discrimination task, as well as a shift from a response to a visual cue discrimination, and vice versa. In Experiment 1, rats were tested on the response discrimination task followed by the visual cue discrimination task. In Experiment 2, the testing order was reversed. Infusions of 2% tetracaine did not impair acquisition of the response or visual cue discrimination but impaired performance when shifting from a response to a visual cue discrimination, and vice versa. Analysis of the errors revealed that the deficit was not due to perseveration of the previously learned strategy, but to an inability to maintain the new strategy. These results contrast with findings indicating that prelimbic inactivation impairs behavioral flexibility due to perseveration of a previously learned strategy. Thus, specific circuits in the prefrontal cortex and striatum may interact to enable behavioral flexibility, but each region may contribute to distinct processes that facilitate strategy switching.


The Journal of Neuroscience | 2006

Learning-Related Development of Context-Specific Neuronal Responses to Places and Events: The Hippocampal Role in Context Processing

David M. Smith; Sheri J.Y. Mizumori

Contextual information plays a key role in learning and memory. Learned information becomes associated with the context such that the context can cue the relevant memories and behaviors. An extensive literature involving experimental brain lesions has implicated the hippocampus in context processing. However, the neurophysiological mechanisms of context coding are not known. Although “context” has typically been defined in terms of the background cues, recent studies indicate that hippocampal neurons are sensitive to subtle changes in task demands, even in an unchanging environment. Thus, the context may also include non-environmental features of a learning situation. In the present study, hippocampal neuronal activity was recorded while rats learned to approach different reward locations in two contexts. Because all of the training took place in the same environment, the contexts were defined by the task demands rather than by environmental stimuli. Learning to differentiate two such contexts was associated with the development of highly context-specific neuronal firing patterns. These included different place fields in pyramidal neurons and different event (e.g., reward) responses in pyramidal and interneurons. The differential firing patterns did not develop in a control condition that did not involve a context manipulation. The context-specific firing patterns could modulate activity in extrahippocampal structures to prime context-appropriate behavioral responses and memories. These results provide direct support for a context processing role of the hippocampus and suggest that the hippocampus contributes contextual representations to episodic memories.


Nature Neuroscience | 2011

Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety

Larry S. Zweifel; Jonathan P. Fadok; Emmanuela Argilli; Michael G. Garelick; Graham L. Jones; Tavis M.K. Dickerson; James M. Allen; Sheri J.Y. Mizumori; Antonello Bonci; Richard D. Palmiter

Generalized anxiety is thought to result, in part, from impairments in contingency awareness during conditioning to cues that predict aversive or fearful outcomes. Dopamine neurons of the ventral midbrain exhibit heterogeneous responses to aversive stimuli that are thought to provide a critical modulatory signal to facilitate orientation to environmental changes and assignment of motivational value to unexpected events. Here we describe a mouse model in which activation of dopamine neurons in response to an aversive stimulus is attenuated by conditional genetic inactivation of functional NMDA receptors on dopamine neurons. We discovered that altering the magnitude of excitatory responses by dopamine neurons in response to an aversive stimulus was associated with impaired conditioning to a cue that predicts an aversive outcome. Impaired conditioning by these mice was associated with the development of a persistent, generalized anxiety-like phenotype. These data are consistent with a role for dopamine in facilitating contingency awareness that is critical for the prevention of generalized anxiety.


Neurobiology of Learning and Memory | 2004

Parallel processing across neural systems: implications for a multiple memory system hypothesis

Sheri J.Y. Mizumori; Oksana Yeshenko; Kathryn M. Gill; Denise M. Davis

A common conceptualization of the organization of memory systems in brain is that different types of memory are mediated by distinct neural systems. Strong support for this view comes from studies that show double (or triple) dissociations between spatial, response, and emotional memories following selective lesions of hippocampus, striatum, and the amygdala. Here, we examine the extent to which hippocampal and striatal neural activity patterns support the multiple memory systems view. A comparison is made between hippocampal and striatal neural correlates with behavior during asymptotic performance of spatial and response maze tasks. Location- (or place), movement, and reward-specific firing patterns were found in both structures regardless of the task demands. Many, but not all, place fields of hippocampal and striatal neurons were similarly affected by changes in the visual and reward context regardless of the cognitive demands. Also, many, but not all, hippocampal and striatal movement-sensitive neurons showed significant changes in their behavioral correlates after a change in visual context, irrespective of cognitive strategy. Similar partial reorganization was observed following manipulations of the reward condition for cells recorded from both structures, again regardless of task. Assuming that representations that persist across context changes reflect learned information, we make the following conclusions. First, the consistent pattern of partial reorganization supports a view that the analysis of spatial, response, and reinforcement information is accomplished via an error-driven, or match-mismatch, algorithm across neural systems. Second, task-relevant processing occurs continuously within hippocampus and striatum regardless of the cognitive demands of the task. Third, given the high degree of parallel processing across allegedly different memory systems, we propose that different neural systems may effectively compete for control of a behavioral expression system. The strength of the influence of any one neural system on behavioral output is likely modulated by factors such as motivation, experience, or hormone status.


Neurobiology of Learning and Memory | 2005

Differential effects of estrogen on hippocampal- and striatal-dependent learning.

D.M. Davis; T.K. Jacobson; S. Aliakbari; Sheri J.Y. Mizumori

Estrogens role in learning and memory may be to predispose animals to use specific cognitive strategies (Korol & Kolo, 2002). Specifically, estrogen may facilitate hippocampal-dependent learning, while at the same time attenuate striatal-dependent learning. As a stringent test of this hypothesis, place or response learning on an eight-arm radial maze was compared between ovariectomized (OVX) female Long-Evans rats and rats with chronic estrogen replacement (OVX+E; 5mg 17-beta estradiol 60-day release tablet). Reference and working memory errors were monitored separately for both place and response learning tasks. OVX+E rats learned the place task significantly faster than the response task, and faster than OVX rats. OVX rats required fewer days to reach criterion on the response task than OVX+E rats. Estrogen selectively enhanced reference memory performance, but only during place learning. The specific pattern of estrogen effects on learning suggests that future studies include verification of cognitive strategies used by animals.


Neuroreport | 1999

Retrosplenial cortex inactivation selectively impairs navigation in darkness.

Brenton G. Cooper; Sheri J.Y. Mizumori

There is an emerging consensus that retrosplenial and posterior parietal cortex importantly contribute to navigation. Several theories of navigation have argued that these cortical areas, particularly retrosplenial cortex, are involved in path integration. In an effort to characterize the role of retrosplenial cortex in active navigation, the effects of temporary inactivation of retrosplenial cortex on spatial memory performance were evaluated in light and dark testing conditions. Inactivation of retrosplenial cortex selectively resulted in behavioral impairments when animals were tested in darkness. These data support the hypothesis that retrosplenial cortex contributes to navigation in darkness, perhaps by providing mnemonic associations of the visual and nonvisual environment that can be used to correct for cumulative errors that occur during path integration.


Behavioral Neuroscience | 2004

Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks

Oxana Yeshenko; Alex Guazzelli; Sheri J.Y. Mizumori

Hippocampal and striatal place- and movement-correlated cell firing was recorded as rats performed place or response tasks in a familiar environment, and then after cue manipulation. In a familiar environment, place field properties did not differ across brain structures or task conditions. Movement correlates were stronger during place task performance only in hippocampal neurons. After cue manipulations, place- and movement-sensitive hippocampal and striatal neurons changed their correlate strength, regardless of behavioral strategy. Thus, for both structures, place-correlated cells may encode spatial context information, whereas movement-correlated cells may represent both egocentric movement and learned behavioral responses. The striking overall similarity between hippocampal and striatal neural responses to context manipulation (regardless of strategy) suggests that these structures operate continuously, and in parallel, during multiple forms of learning.


Hippocampus | 2011

Hippocampal episode fields develop with learning

Patrick R. Gill; Sheri J.Y. Mizumori; David M. Smith

Several recent studies have shown that hippocampal neurons fire during the delay period in between trials and that these firing patterns differ when different behaviors are required, suggesting that the neuronal responses may be involved in maintaining the memories needed for the upcoming trial. In particular, one study found that hippocampal neurons reliably fired at particular times, referred to as “episode fields” (EFs), during the delay period of a spatial alternation task (Pastalkova et al. ( 2008 ) Science 321:1322–1327). The firing of these neurons resulted in distinct sequential firing patterns on left and right turn trials, and these firing patterns could be used to predict the upcoming behavioral response. In this study, we examined neuronal firing during the delay period of a hippocampus‐dependent plus maze task, which involved learning to approach two different reward locations (east and west), and we examined the development of these firing patterns with learning. As in the previous study, hippocampal neurons exhibited discrete periods of elevated firing during the delay (EFs) and the firing patterns were distinct on the east and west trials. Moreover, these firing patterns emerged and began to differentiate the east and west conditions during the first training session and continued to develop as the rats learned the task. The finding of similar firing patterns in different tasks suggests that the EFs are a robust phenomenon, which may occur whenever subjects must maintain distinct memory representations during a delay period. Additionally, in the previous study (Pastalkova et al. ( 2008 ) Science 321:1322–1327), the distinct firing patterns could have been due to the differing goal locations, behavioral responses (left or right turns), or trajectories. In this study, neuronal firing varied with the goal location regardless of the trajectories or responses, suggesting that the firing patterns encode the behavioral context rather than specific behaviors. ©2010 Wiley Periodicals, Inc.


Experimental Brain Research | 2001

Dorsal striatal head direction and hippocampal place representations during spatial navigation

Katharine E. Ragozzino; Stefan Leutgeb; Sheri J.Y. Mizumori

Abstract. Several theories of basal ganglia function describe a striatal contribution to learning that is independent of hippocampal function. This study examined the question of whether the striatum should be regarded as functioning independently of or acting in concert with limbic structures. Dorsal striatal head direction cells and hippocampal place cells were recorded in parallel while rats performed a hippocampal-dependent radial maze task. Changes in the directional preference of head direction cells and the location of place fields were compared following alterations of the sensory environment. When familiar visual cues were presented in new spatial arrangements, or when new visual cues were placed in a familiar environment, rotations of directional preferences were consistent with the mean place-field response. When familiar visual and nonvisual cues were presented in conflict, or when rats were exposed to novel environments, the responses of the two cell types were inconsistent relative to each other. This pattern suggests that current perceptions and expectations of familiar spatial contexts may dynamically modulate the relationship between hippocampus and dorsal striatum.

Collaboration


Dive into the Sheri J.Y. Mizumori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Leutgeb

University of California

View shared research outputs
Top Co-Authors

Avatar

Yong Sang Jo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge