Sheridan Gentili
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sheridan Gentili.
Pediatric Nephrology | 2010
Janna L. Morrison; Jaime A. Duffield; Beverly S. Muhlhausler; Sheridan Gentili; I. C. McMillen
There is an association between growing slowly before birth, accelerated growth in early postnatal life and the emergence of insulin resistance, visceral obesity and glucose intolerance in adult life. In this review we consider the pathway through which intrauterine growth restriction (IUGR) leads to the initial increase in insulin sensitivity and to catch-up growth. We also discuss the importance of the early insulin environment in determining later visceral adiposity and the intrahepatic mechanisms that may result in the emergence of glucose intolerance in a subset of IUGR infants. We present evidence that a key fetal adaptation to poor fetal nutrition is an upregulation of the abundance of the insulin receptor in the absence of an upregulation of insulin signalling in fetal skeletal muscle. After birth, however, there is an upregulation in the abundance of the insulin receptor and the insulin signalling pathway in the IUGR offspring. Thus, the origins of the accelerated postnatal growth rate experienced by IUGR infants lie in the fetal adaptations to a poor nutrient supply. We also discuss how the intracellular availability of free fatty acids and glucose within the visceral adipocyte and hepatocyte in fetal and neonatal life are critical in determining the subsequent metabolic phenotype of the IUGR offspring. It is clear that a better understanding of the relative contributions of the fetal and neonatal nutrient environment to the regulation of key insulin signalling pathways in muscle, visceral adipose tissue and the liver is required to support the development of evidence-based intervention strategies and better outcomes for the IUGR infant.
Advances in Experimental Medicine and Biology | 2009
I. Caroline McMillen; Leewen Rattanatray; Jaime A. Duffield; Janna L. Morrison; Severence M. MacLaughlin; Sheridan Gentili; Beverley S. Muhlhäusler
Excess bodyweight is the sixth most important risk factor contributing to the overall burden of disease worldwide. In excess of a billion adults and 10% of all children are now classified as overweight or obese. The main adverse consequences of obesity are the metabolic syndrome, cardiovascular disease and type 2 diabetes and a diminished average life expectancy. It has been argued that the complex pathological processes underlying obesity reflect environmental and genetic interactions, and individuals from disadvantaged communities seem to have greater risks than more affluent individuals partly because of fetal and postnatal programming interactions. Abundant evidence indicates that the obesity epidemic reflects progressive secular and age-related decreases in physical activity, together with passive over-consumption of energy dense foods despite neurobiological processes designed to regulate energy balance. The difficulty in treating obesity, however, highlights the deficits in our current understanding of the pathophysiology which underlies the initiation and chronic nature of this disorder. Large population based studies in Europe and North America in healthy women and in women with gestational diabetes have demonstrated that there are clear relationships between maternal and fetal nutrient supply, fetal growth patterns and the subsequent risk of obesity and glucose intolerance in childhood and adult life. In this review we discuss the impact of fetal nutrition on the biology of the developing adipocyte and brain and the growing evidence base supporting an intergenerational cycle of obesity.
Biology of Reproduction | 2009
Sheridan Gentili; Janna L. Morrison; I. Caroline McMillen
Abstract Fetal adaptations to periods of substrate deprivation can result in the programming of glucose intolerance, insulin resistance, and metabolic dysfunction in later life. Placental insufficiency can be associated with either sparing or sacrifice of fetal liver growth, and these different responses may have different metabolic consequences. It is unclear what intrahepatic mechanisms determine the differential responses of the fetal liver to substrate restriction. We investigated the effects of placental restriction (PR) on liver growth and the hepatic expression of SLC2A1, IGF1, IGF2, IGF1R, IGF2R, PPARGC1A, PPARA, PRKAA1, PRKAA2, PCK2, and HSDL1 mRNA in fetal sheep at 140–145 days of gestation. A mean gestational arterial partial pressure of oxygen less than 17 mmHg was defined as hypoxic, and a relative liver of weight more than 2 SD below the mean liver weight of controls was defined as reduced liver growth. Fetuses therefore were defined as control-normoxic (C-N; n = 9), PR-normoxic (PR-N; n = 7), PR-hypoxic (PR-H; n = 8), or PR-hypoxic reduced liver growth (PR-H RLG; n = 4). Hepatic SLC2A1 mRNA expression was highest (P < 0.05) in the PR-H fetuses, in which liver growth was maintained. Expression of IGF1 mRNA was decreased (P < 0.05) only in the PR-H RLG group. Hepatic expression of HSDL1, PPARGC1A, and PCK2 mRNA also were increased (P < 0.05) in the PR-H RLG fetuses. The present study highlights that intrahepatic responses to fetal substrate restriction may exist that protect the liver from decreased growth and, potentially, from a decreased responsiveness to the actions of insulin in postnatal life.
Clinical and Experimental Pharmacology and Physiology | 2013
Timothy R. H. Regnault; Sheridan Gentili; Ousseynou Sarr; Carla R. Toop; Deborah M. Sloboda
Fructose is an increasingly common constituent of the Westernized diet due to cost and production efficiencies. Although an integral component of our pre‐industrial revolution diet, over the past two decades human and animal studies have highlighted that excessive fructose intake appears to be associated with adverse metabolic effects. Excessive intake of fructose is the combined result of increased total energy consumption and increased portion sizes of foods, which often incorporate the fructose‐containing sugars sucrose and high‐fructose corn‐syrup (HFCS). The adverse metabolic effects following excessive fructose consumption have become a hot topic in mainstream media and there is now rigorous scientific debate regarding periods of exposure, dosage levels, interactive effects with other sugars and fats and mechanisms underlying the actions of fructose. There is still a degree of controversy regarding the extent to which sugars such as sucrose and HFCS have contributed to the current epidemic of obesity and diabetes. Furthermore, an increasing number of infants are being exposed to sugar‐sweetened food and beverages before birth and during early postnatal life, highlighting the importance of determining the long‐term effects of this perinatal exposure on the developing offspring. There are limited human observational and controlled studies identifying associations of excessive sweetened food and beverage consumption with poor pregnancy outcomes. Animal research has demonstrated an increased incidence of gestational diabetes as well as altered maternal, fetal and offspring metabolic function, although the long‐term effects and the mechanism underlying these perturbations are ill defined. This review aims to understand the role of early life fructose exposure in modifying postnatal risk of disease in the offspring, focusing on fructose intake during pregnancy and in early postnatal life.
Molecular and Cellular Endocrinology | 2011
G.C. Micke; T.M. Sullivan; I. C. McMillen; Sheridan Gentili; V.E.A. Perry
Expression of insulin-like growth factor (IGF)1 and IGF2 and their receptor (IGF1R and IGF2R) mRNA in fetal skeletal muscle are changed by variations in maternal nutrient intake. The persistence of these effects into postnatal life and their association with phenotype in beef cattle is unknown. Here we report that the cross-sectional areas of longissimus dorsi and semitendinosus (ST) muscles were greater for mature male progeny born to heifers fed low protein diets (70% vs. 240% of recommended) during the first trimester. In ST, this was accompanied by greater IGF1, IGF2 and IGF2R mRNA at 680 d. Females exposed to low protein diets during the first trimester had decreased IGF2 mRNA in ST at 680 d, however this did not result in an effect to phenotype. Exposure to low protein diets during the second trimester increased IGF1R mRNA in ST of all progeny at 680 d. Changes to expression of IGF genes in progeny skeletal muscle resulting from variations to maternal protein intake during gestation may have permanent and sex-specific effect on postnatal skeletal muscle growth.
Reproduction | 2011
Gina C Micke; T.M. Sullivan; I. Caroline McMillen; Sheridan Gentili; Vivienne Perry
Changes in maternal nutrient intake during gestation alter IGF receptor abundance and leptin (LEP) mRNA expression in fetal adipose tissue. It is not known whether such changes persist into adult life and whether they are associated with an effect on phenotype. We investigated the effect of high (240%) and low (70%) levels of recommended daily crude protein intake for beef heifers during the first and second trimesters of gestation on singleton progeny (n=68): subcutaneous (SC) adipose tissue depth at rump (P8) and rib (RF) sites from 65 until 657 days of age; plasma leptin concentrations from birth until 657 days and expression of IGF1 and IGF2, their receptors (IGF1R and IGF2R) and LEP mRNA in perirenal (PR), omental (OM) and SC adipose tissue at 680 days of age. High-protein diets during the first trimester increased LEP and IGF1 mRNA in PR of males and females, respectively, compared with low-protein diets, and decreased IGF1R mRNA in SC of all progeny but increased RF depth of males between 552 and 657 days. High-protein diets compared with low-protein diets during the second trimester increased IGF1R mRNA in PR and OM of all progeny; LEP mRNA in PR of males; and IGF2 and IGF2R mRNA in OM of all progeny. Conversely, LEP mRNA in OM and IGF2 mRNA in PR of all progeny were decreased following exposure to high- compared with low-protein diets during the second trimester. Heifer diet during gestation has permanent sex- and depot-specific effects on the expression of adipogenic and adipocytokine genes and offspring adiposity.
Journal of Antimicrobial Chemotherapy | 2017
Sahand Imani; Hergen Buscher; Debbie Marriott; Sheridan Gentili; Indy Sandaradura
Objectives To determine the existence of concentration-toxicity relationships for common β-lactam antibiotic adverse effects and define thresholds above which toxicity is more likely. Patients and methods Retrospective review of consecutive patients treated with piperacillin, meropenem or flucloxacillin who underwent therapeutic drug monitoring (TDM) at St Vincents Hospital (Sydney, Australia) between January 2013 and December 2015. Adverse events investigated included neurotoxicity, nephrotoxicity, hepatotoxicity and opportunistic Clostridium difficile infection. Toxicity was measured using observational grading criteria, clinical assessment and relevant serum biomarkers. These findings were correlated with trough TDM measurements at the time of toxicity presentation. Results TDM results from 378 patients (piperacillin = 223, meropenem = 94 and flucloxacillin = 61) were investigated. There was no difference in baseline patient characteristics across antibiotic groups. A statistically significant elevation in mean serum trough concentrations (Cmin) was found in patients diagnosed with neurotoxicity (piperacillin, P < 0.01; meropenem, P = 0.04; flucloxacillin, P = 0.01) and those who developed nephrotoxicity whilst being treated with piperacillin (P < 0.01) or meropenem (P < 0.01). Incidence of hepatotoxicity and C. difficile was not related to Cmin. Threshold concentrations for which there is 50% risk of developing a neurotoxicity event (piperacillin, Cmin >361.4 mg/L; meropenem, Cmin >64.2 mg/L; flucloxacillin, Cmin >125.1 mg/L) or nephrotoxicity (piperacillin, Cmin >452.65 mg/L; meropenem, Cmin >44.45 mg/L) varied across antibiotics. Conclusions Our data reveal an association between toxic concentrations for a number of β-lactam agents and neurotoxic/nephrotoxic effects. We have defined threshold concentrations above which these toxicities become more likely. Clinicians should balance concerns for therapeutic efficacy with potential toxicity when considering aggressive therapy.
Nutrients | 2016
Carla R. Toop; Sheridan Gentili
A high intake of refined carbohydrates, particularly the monosaccharide fructose, has been attributed to the growing epidemics of obesity and type-2 diabetes. Animal studies have helped elucidate the metabolic effects of dietary fructose, however, variations in study design make it difficult to draw conclusions. The aim of this study was to review the effects of fructose beverage consumption on body weight, systolic blood pressure and blood glucose, insulin and triglyceride concentrations in validated rat models. We searched Ovid Embase Classic + EmbaseMedline and Ovid Medline databases and included studies that used adolescent/adult male rats, with fructose beverage consumption for >3 weeks. Data from 26 studies were pooled by an inverse variance weighting method using random effects models, expressed as standardized mean differences (SMD) with 95% confidence intervals (CI). Overall, 10%–21% w/v fructose beverage consumption was associated with increased rodent body weight (SMD, 0.62 (95% CI: 0.18, 1.06)), systolic blood pressure (SMD, 2.94 (95% CI: 2.10, 3.77)) and blood glucose (SMD, 0.77 (95% CI: 0.36, 1.19)), insulin (SMD, 2.32 (95% CI: 1.57, 3.07)) and triglyceride (SMD, 1.87 (95% CI: 1.39, 2.34)) concentrations. Therefore, the consumption of a low concentration fructose beverage is sufficient to cause early signs of the metabolic syndrome in adult rats.
The Journal of Physiology | 2017
Carla R. Toop; Beverly S. Muhlhausler; Kerin O'Dea; Sheridan Gentili
Fructose‐containing sugars, including sucrose and high fructose corn syrup (HFCS), have been implicated in the epidemics of obesity and type 2 diabetes. Few studies have evaluated the impact of perinatal exposure to these sugars on metabolic and physiological outcomes in the offspring. Using a rat model, offspring exposed to a maternal sucrose or HFCS diet during the prenatal and/or suckling periods were found to have altered adiposity and liver fat content and composition at weaning. Plasma levels of free fatty acids remained elevated in young adulthood, but consumption of a control diet following weaning appeared to ameliorate most other effects of perinatal exposure to a maternal high‐sugar diet. Guidelines for maternal nutrition should advise limiting consumption of fructose‐containing sugars, and it is particularly important that these recommendations include maternal nutrition during lactation.
Journal of Applied Physiology | 2011
G. S. Posterino; Stacey Leanne Dunn; Kimberley J. Botting; William Wang; Sheridan Gentili; Janna L. Morrison
The development of the adult cardiac troponin complex in conjunction with changes in cardiac function and cardiomyocyte binucleation has not been systematically characterized during fetal life in a species where maturation of the cardiomyocytes occurs prenatally as it does in the human. The aim of this study was to correlate the expression of each of the major adult troponin isoforms (T, I, and C) during late gestation (term of 150 days) to changes in both Ca(2+) sensitivity and maximum Ca(2+)-activated force of the contractile apparatus and the maturation of cardiomyocytes. The percentage of mononucleated cardiomyocytes in the right ventricle decreased with gestational age to 46% by 137-142 days of gestation. The length of binucleated cardiomyocytes did not change with gestational age, but the length of binucleated cardiomyocytes relative to heart weight decreased with gestational age. There was no change in the expression of adult cardiac troponin T with increasing gestation. The contractile apparatus was significantly more sensitive to Ca(2+) at 90 days compared with either 132 or 139 days of gestation, consistent with an ∼30% increase in the expression of adult cardiac troponin I between 90 and 110 days of gestation. Maximum Ca(2+)-activated force significantly increased from 90 days compared with 130 days consistent with an increase of ∼40% in cardiac troponin C protein expression. These data show that increased adult cardiac troponin I and C protein expression across late gestation is consistent with reduced Ca(2+) sensitivity and increased maximum Ca(2+)-activated force. Furthermore, changes in cardiac troponin C, not I, protein expression track with the timing of cardiomyocyte binucleation.