Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sherin Alias is active.

Publication


Featured researches published by Sherin Alias.


Circulation Research | 2015

Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size

Andreas Mangold; Sherin Alias; T Scherz; T Hofbauer; Johannes Jakowitsch; Adelheid Panzenböck; Daniel Simon; Daniela Laimer; Christine Bangert; Andreas A. Kammerlander; Julia Mascherbauer; Max-Paul Winter; Klaus Distelmaier; Christopher Adlbrecht; Klaus T. Preissner; Irene M. Lang

RATIONALE Mechanisms of coronary occlusion in ST-elevation acute coronary syndrome are poorly understood. We have previously reported that neutrophil (polymorphonuclear cells [PMNs]) accumulation in culprit lesion site (CLS) thrombus is a predictor of cardiovascular outcomes. OBJECTIVE The goal of this study was to characterize PMN activation at the CLS. We examined the relationships between CLS neutrophil extracellular traps (NETs), bacterial components as triggers of NETosis, activity of endogenous deoxyribonuclease, ST-segment resolution, and infarct size. METHODS AND RESULTS We analyzed coronary thrombectomies from 111 patients with ST-elevation acute coronary syndrome undergoing primary percutaneous coronary intervention. Thrombi were characterized by immunostaining, flow cytometry, bacterial profiling, and immunometric and enzymatic assays. Compared with femoral PMNs, CLS PMNs were highly activated and formed aggregates with platelets. Nucleosomes, double-stranded DNA, neutrophil elastase, myeloperoxidase, and myeloid-related protein 8/14 were increased in CLS plasma, and NETs contributed to the scaffolds of particulate coronary thrombi. Copy numbers of Streptococcus species correlated positively with dsDNA. Thrombus NET burden correlated positively with infarct size and negatively with ST-segment resolution, whereas CLS deoxyribonuclease activity correlated negatively with infarct size and positively with ST-segment resolution. Recombinant deoxyribonuclease accelerated the lysis of coronary thrombi ex vivo. CONCLUSIONS PMNs are highly activated in ST-elevation acute coronary syndrome and undergo NETosis at the CLS. Coronary NET burden and deoxyribonuclease activity are predictors of ST-segment resolution and myocardial infarct size.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Defective Angiogenesis Delays Thrombus Resolution A Potential Pathogenetic Mechanism Underlying Chronic Thromboembolic Pulmonary Hypertension

Sherin Alias; Bassam Redwan; Adelheid Panzenboeck; Max P. Winter; Uwe Schubert; Robert Voswinckel; Maria K. Frey; Johannes Jakowitsch; Arman Alimohammadi; Lukas Hobohm; Andreas Mangold; Helga Bergmeister; Maria Sibilia; Erwin F. Wagner; Eckhard Mayer; Walter Klepetko; Thomas J. Hoelzenbein; Klaus T. Preissner; Irene M. Lang

Objective— Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results— Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions— In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis. # Significance {#article-title-44}Objective—Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results—Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions—In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis.


Journal of the American Heart Association | 2014

Splenectomy Is Modifying the Vascular Remodeling of Thrombosis

Maria K. Frey; Sherin Alias; Max P. Winter; Bassam Redwan; Gerald Stübiger; Adelheid Panzenboeck; Arman Alimohammadi; Diana Bonderman; Johannes Jakowitsch; Helga Bergmeister; Valery N. Bochkov; Klaus T. Preissner; Irene M. Lang

Background Splenectomy is a clinical risk factor for complicated thrombosis. We hypothesized that the loss of the mechanical filtering function of the spleen may enrich for thrombogenic phospholipids in the circulation, thereby affecting the vascular remodeling of thrombosis. Methods and Results We investigated the effects of splenectomy both in chronic thromboembolic pulmonary hypertension (CTEPH), a human model disease for thrombus nonresolution, and in a mouse model of stagnant flow venous thrombosis mimicking deep vein thrombosis. Surgically excised thrombi from rare cases of CTEPH patients who had undergone previous splenectomy were enriched for anionic phospholipids like phosphatidylserine. Similar to human thrombi, phosphatidylserine accumulated in thrombi after splenectomy in the mouse model. A postsplenectomy state was associated with larger and more persistent thrombi. Higher counts of procoagulant platelet microparticles and increased leukocyte–platelet aggregates were observed in mice after splenectomy. Histological inspection revealed a decreased number of thrombus vessels. Phosphatidylserine‐enriched phospholipids specifically inhibited endothelial proliferation and sprouting. Conclusions After splenectomy, an increase in circulating microparticles and negatively charged phospholipids is enhanced by experimental thrombus induction. The initial increase in thrombus volume after splenectomy is due to platelet activation, and the subsequent delay of thrombus resolution is due to inhibition of thrombus angiogenesis. The data illustrate a potential mechanism of disease in CTEPH.


Blood | 2013

Platelet endothelial cell adhesion molecule 1 deficiency misguides venous thrombus resolution

Joerg Kellermair; Bassam Redwan; Sherin Alias; Joerg Jabkowski; Adelheid Panzenboeck; Lukas Kellermair; Max P. Winter; Ansgar Weltermann; Irene M. Lang

Platelet endothelial cell adhesion molecule 1 (PECAM-1) is involved in leukocyte migration and angiogenesis, which are key components of venous thrombus resolution. This study investigated the effect of PECAM-1 deficiency on thrombus resolution in FVB/n mice and the extent to which levels of soluble PECAM-1 (sPECAM-1) correlate with delayed thrombus resolution in humans after acute symptomatic deep vein thrombosis (DVT). In a mouse stagnant flow venous thrombosis model Pecam-1(-/-) thrombi were larger, persisted for longer periods of time, and displayed attenuated macrophage invasion and decreased vessel formation in the presence of increased fibrosis. In humans, higher levels of truncated plasma sPECAM-1 possibly cleaved from cell surfaces, were found in patients with delayed thrombus resolution (assessed via duplex-based thrombus scoring) relative to those whose thrombi resolved (median, 25th/75th percentile): 92.5 (87.7/103.4) ng/mL vs 71.5 (51.1/81.0) ng/mL; P < .001. Furthermore, unresolved human deep vein thrombus specimens stained positively with antibodies specific for the extracellular, but not the cytoplasmic domain of PECAM-1, consistent with accumulation of cleaved PECAM-1. Our data suggest a regulatory role of PECAM-1 in venous thrombus resolution and suggest a predictive value of sPECAM-1 for postthrombotic syndrome (PTS) after acute DVT.


Pulmonary circulation | 2013

Coagulation and the vessel wall in pulmonary embolism.

Sherin Alias; Irene M. Lang

Venous thromboembolism comprises deep-vein thrombosis, thrombus in transit, acute pulmonary embolism, and chronic thromboembolic pulmonary hypertension (CTEPH). Pulmonary thromboemboli commonly resolve, with restoration of normal pulmonary hemodynamics. When they fail to resorb, permanent occlusion of the deep veins and/or CTEPH are the consequences. Apart from endogenous fibrinolysis, venous thrombi resolve by a process of mechanical fragmentation, through organization of the thromboembolus by invasion of endothelial cells, leukocytes, and fibroblasts leading to recanalization. Recent data utilizing various models have contributed to a better understanding of venous thrombosis and the resolution process that is directed at maintaining vascular patency. This review summarizes the plasmatic and cellular components of venous thrombus formation and resolution.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Defective Angiogenesis Delays Thrombus ResolutionSignificance

Sherin Alias; Bassam Redwan; Adelheid Panzenböck; Max P. Winter; Uwe Schubert; Robert Voswinckel; Maria K. Frey; Johannes Jakowitsch; Arman Alimohammadi; Lukas Hobohm; Andreas Mangold; Helga Bergmeister; Maria Sibilia; Erwin F. Wagner; Eckhard Mayer; Walter Klepetko; Thomas Hölzenbein; Klaus T. Preissner; Irene M. Lang

Objective— Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results— Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions— In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis. # Significance {#article-title-44}Objective—Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results—Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions—In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Defective Angiogenesis Delays Thrombus Resolution

Sherin Alias; Bassam Redwan; Adelheid Panzenböck; Max P. Winter; Uwe Schubert; Robert Voswinckel; Maria K. Frey; Johannes Jakowitsch; Arman Alimohammadi; Lukas Hobohm; Andreas Mangold; Helga Bergmeister; Maria Sibilia; Erwin F. Wagner; Eckhard Mayer; Walter Klepetko; Thomas J. Hölzenbein; Klaus T. Preissner; Irene M. Lang

Objective— Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results— Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions— In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis. # Significance {#article-title-44}Objective—Restoration of patency is a natural target of vascular remodeling after venous thrombosis that involves vascular endothelial cells and smooth muscle cells, as well as leukocytes. Acute pulmonary emboli usually resolve <6 months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results—Mice with an endothelial cell–specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor were used in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of nonresolving venous thromboembolism. Endothelial cell–specific deletion of kinase insert domain protein receptor and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes, such as kinase insert domain protein receptor, vascular endothelial cadherin, and podoplanin, were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by vascular endothelial growth factor. Conclusions—In the present work, we propose a mechanism of thrombus nonresolution demonstrating that endothelial cell–specific deletion of kinase insert domain protein receptor abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis.


European Heart Journal | 2013

Formation of typical vascular lesions in a new experimental model of pulmonary arterial hypertension

Max-Paul Winter; A Alimohammadi; Adelheid Panzenboeck; M. K. Frey; M. Sibilia; Sherin Alias; David Santer; Bruno K. Podesser; F. Nagel; Irene Lang

Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by obstruction of small pulmonary arteries leading to increased pulmonary vascular resistance. The key pathologic finding is a negative vascular remodeling process with total vessel occlusion and a monoclonal expansion of endothelial cells. Vascular endothelial growth factor (VEGF) signaling plays a significant role in this process. Aim of our study was to investigate whether inhibition of VEGFR-2 (KDR) by gene manipulation may replicate classical pulmonary vasculopathy. Methods: We utilized mice with conditional KDR knock-out in endothelial cells (KDR-/-). KDRflox/flox/Tie-2Cre and KDRflox/flox/Tie-2 mice were injected intraperitoneally with tamoxifen for 3 weeks to induce knock-out. KDR-/- mice and wild type littermates were held in an environmental chamber with FiO2 of 0.1 or under normoxia for 2, 4, and 6 weeks. We investigated the effect of KDR deletion and chronic normobaric hypoxia on pulmonary hemodynamics and right ventricular hypertrophy. Results: KDR-/- mice showed significantly increased right ventricular pressures (RVSP’s) and Fulton indices after 2, 4, and 6 weeks under normoxic conditions, compared with wild type controls. Both KDR-/- and wild type mice showed increased RVSP’s under normobaric hypoxia. KDR-/- mice revealed significantly higher RVSP’s and Fulton indices than controls after 4 and 6 weeks. Lung histologies demonstrated neointimal thickening and vessel occlusions in lungs of KDR-/- mice resembling human pulmonary arteriopathy. Conclusion Classical pulmonary arterial hypertension was induced in C57/BL6J mice by direct ablative gene manipulation of KDR.


Cardiovascular Research | 2014

P726Coronary NET burden and DNase activity in ST-elevation acute coronary syndrome are predictors of infarct size

Andreas Mangold; T Scherz; Sherin Alias; T Hofbauer; Johannes Jakowitsch; Christine Bangert; S Pfaffenberger; Max-Paul Winter; Klaus T. Preissner; Irene Lang


European Respiratory Journal | 2013

Administration of fibrin Bβ15-42 (FX06) delays venous thrombus resolution

Sherin Alias; Bassam Redwan; Max P. Winter; Adelheid Panzenboeck; Johannes Jakowitsch; Peter Petzelbauer; Irene M. Lang

Collaboration


Dive into the Sherin Alias's collaboration.

Top Co-Authors

Avatar

Irene M. Lang

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Johannes Jakowitsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adelheid Panzenboeck

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Andreas Mangold

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Bassam Redwan

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Max P. Winter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Helga Bergmeister

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Maria K. Frey

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Max-Paul Winter

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge