Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shermali Gunawardena is active.

Publication


Featured researches published by Shermali Gunawardena.


Neuron | 2003

Disruption of Axonal Transport by Loss of Huntingtin or Expression of Pathogenic PolyQ Proteins in Drosophila

Shermali Gunawardena; Lu Shiun Her; Richard G. Brusch; Robert A. Laymon; Ingrid R. Niesman; Beth Gordesky-Gold; Louis Sintasath; Nancy M. Bonini; Lawrence S.B. Goldstein

We tested whether proteins implicated in Huntingtons and other polyglutamine (polyQ) expansion diseases can cause axonal transport defects. Reduction of Drosophila huntingtin and expression of proteins containing pathogenic polyQ repeats disrupt axonal transport. Pathogenic polyQ proteins accumulate in axonal and nuclear inclusions, titrate soluble motor proteins, and cause neuronal apoptosis and organismal death. Expression of a cytoplasmic polyQ repeat protein causes adult retinal degeneration, axonal blockages in larval neurons, and larval lethality, but not neuronal apoptosis or nuclear inclusions. A nuclear polyQ repeat protein induces neuronal apoptosis and larval lethality but no axonal blockages. We suggest that pathogenic polyQ proteins cause neuronal dysfunction and organismal death by two non-mutually exclusive mechanisms. One mechanism requires nuclear accumulation and induces apoptosis; the other interferes with axonal transport. Thus, disruption of axonal transport by pathogenic polyQ proteins could contribute to early neuropathology in Huntingtons and other polyQ expansion diseases.


Neuron | 2001

Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila

Shermali Gunawardena; Lawrence S.B. Goldstein

We tested the hypothesis that amyloid precursor protein (APP) and its relatives function as vesicular receptor proteins for kinesin-I. Deletion of the Drosophila APP-like gene (Appl) or overexpression of human APP695 or APPL constructs caused axonal transport phenotypes similar to kinesin and dynein mutants. Genetic reduction of kinesin-I expression enhanced while genetic reduction of dynein expression suppressed these phenotypes. Deletion of the C terminus of APP695 or APPL, including the kinesin binding region, disrupted axonal transport of APP695 and APPL and abolished the organelle accumulation phenotype. Neuronal apoptosis was induced only by overexpression of constructs containing both the C-terminal and Abeta regions of APP695. We discuss the possibility that axonal transport disruption may play a role in the neurodegenerative pathology of Alzheimers disease.


PLOS ONE | 2012

Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

Farda Barandeh; Phuong-Lan Nguyen; Rajiv Kumar; Gary J. Iacobucci; Michelle L. Kuznicki; Andrew Kosterman; Earl J. Bergey; Paras N. Prasad; Shermali Gunawardena

The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.


Human Molecular Genetics | 2010

Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies

Tomás L. Falzone; Shermali Gunawardena; David McCleary; Gerald F. Reis; Lawrence S.B. Goldstein

Neurodegeneration induced by abnormal hyperphosphorylation and aggregation of the microtubule-associated protein tau defines neurodegenerative tauopathies. Destabilization of microtubules by loss of tau function and filament formation by toxic gain of function are two mechanisms suggested for how abnormal tau triggers neuronal loss. Recent experiments in kinesin-1 deficient mice suggested that axonal transport defects can initiate biochemical changes that induce activation of axonal stress kinase pathways leading to abnormal tau hyperphosphorylation. Here we show using Drosophila and mouse models of tauopathies that reductions in axonal transport can exacerbate human tau protein hyperphosphorylation, formation of insoluble aggregates and tau-dependent neurodegeneration. Together with previous work, our results suggest that non-lethal reductions in axonal transport, and perhaps other types of minor axonal stress, are sufficient to induce and/or accelerate abnormal tau behavior characteristic of Alzheimers disease and other neurodegenerative tauopathies.


Journal of Clinical Investigation | 2016

Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration

Wei Xu; April M. Weissmiller; Joseph A. White; Fang Fang; Xinyi Wang; Yiwen Wu; Matthew L. Pearn; Xiaobei Zhao; Mariko Sawa; Sheng-Di Chen; Shermali Gunawardena; Jianqing Ding; William C. Mobley; Chengbiao Wu

The endosome/lysosome pathway is disrupted early in the course of both Alzheimers disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.


Human Molecular Genetics | 2013

Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo

Shermali Gunawardena; Ge Yang; Lawrence S.B. Goldstein

Neurons and other cells require intracellular transport of essential components for viability and function. Previous work has shown that while net amyloid precursor protein (APP) transport is generally anterograde, individual vesicles containing APP move bi-directionally. This discrepancy highlights our poor understanding of the in vivo regulation of APP-vesicle transport. Here, we show that reduction of presenilin (PS) or suppression of gamma-secretase activity substantially increases anterograde and retrograde velocities for APP vesicles. Strikingly, PS deficiency has no effect on an unrelated cargo vesicle class containing synaptotagmin, which is powered by a different kinesin motor. Increased velocities caused by PS or gamma-secretase reduction require functional kinesin-1 and dynein motors. Together, our findings suggest that a normal function of PS is to repress kinesin-1 and dynein motor activity during axonal transport of APP vesicles. Furthermore, our data suggest that axonal transport defects induced by loss of PS-mediated regulatory effects on APP-vesicle motility could be a major cause of neuronal and synaptic defects observed in Alzheimers Disease (AD) pathogenesis. Thus, perturbations of APP/PS transport could contribute to early neuropathology observed in AD, and highlight a potential novel therapeutic pathway for early intervention, prior to neuronal loss and clinical manifestation of disease.


Proceedings of the National Academy of Sciences of the United States of America | 2014

prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies.

Salleh N. Ehaideb; Atulya Iyengar; Atsushi Ueda; Gary J. Iacobucci; Cathryn Cranston; Alexander G. Bassuk; David Gubb; Jeffrey D. Axelrod; Shermali Gunawardena; Chun-Fang Wu; J. Robert Manak

Significance Mutations in prickle genes from flies to humans cause epilepsy, a disorder that affects approximately 1% of the population. Although Prickle has been studied for many years, its molecular function is unknown. We now show that Prickle modulates transport of vesicles in fruit fly neurons. Additionally, we show that prickle mutants have electrophysiological defects consistent with epilepsy, and merely altering the balance of Prickle isoforms causes seizures. Finally, we demonstrate that reducing the level of vesicle transport motor proteins can suppress prickle-mediated seizures, revealing a previously unidentified pathway in the pathophysiology of epilepsy. Recent analyses in flies, mice, zebrafish, and humans showed that mutations in prickle orthologs result in epileptic phenotypes, although the mechanism responsible for generating the seizures was unknown. Here, we show that Prickle organizes microtubule polarity and affects their growth dynamics in axons of Drosophila neurons, which in turn influences both anterograde and retrograde vesicle transport. We also show that enhancement of the anterograde transport mechanism is the cause of the seizure phenotype in flies, which can be suppressed by reducing the level of either of two Kinesin motor proteins responsible for anterograde vesicle transport. Additionally, we show that seizure-prone prickle mutant flies have electrophysiological defects similar to other fly mutants used to study seizures, and that merely altering the balance of the two adult prickle isoforms in neurons can predispose flies to seizures. These data reveal a previously unidentified pathway in the pathophysiology of seizure disorders and provide evidence for a more generalized cellular mechanism whereby Prickle mediates polarity by influencing microtubule-mediated transport.


Current Biology | 2000

Direct evidence for interphase chromosome movement during the mid-blastula transition in Drosophila

Shermali Gunawardena; Mary C. Rykowski

In Drosophila, several genetic phenomena are most easily explained by a model in which homologous chromosomes pair, at least transiently, and use regulatory information present on only one homolog to pattern expression from both homologs [1] [2] [3]. To accomplish pairing of sites on different chromosomes, there must be a mechanism by which communication between homologs is facilitated. However, except in the case of meiotic prophase, directed, rapid chromosomal movement has not yet been observed. Some studies suggest that chromosomes are relatively immobile during interphase [4] [5], while others suggest that chromatin can reposition during interphase [6] [7] [8] and may be free to undergo substantial Brownian motion [9]. Using high-resolution, three-dimensional imaging techniques, we determined directly the structure and nuclear location of eleven different loci, both active and inactive, in embryos at cycle 14, the mid-blastula transition. We show that during a single interphase, portions of chromosomes moved in a cell-cycle-specific, directed fashion, independently and over long distances. All eleven regions showed movement, although the genes closer to the centromere moved faster (0.7 microm/minute) and over long distances (5-10 microm), whereas those nearer the telomere expanded in the same place and became oriented along the nuclear axis. Gene motion was independent of replication, transcription and changes in nuclear shape. Because individual genes on the same chromosome move independently, the movement is unlikely to be mediated by centromeres, Brownian motion or random drift and must be caused by an active mechanism.


Human Molecular Genetics | 2015

Huntingtin differentially regulates the axonal transport of a sub-set of Rab-containing vesicles in vivo

Joseph A. White; Eric N Anderson; Katherine Zimmerman; Kan Hong Zheng; Roza Rouhani; Shermali Gunawardena

Loss of huntingtin (HTT), the Huntingtons disease (HD) protein, was previously shown to cause axonal transport defects. Within axons, HTT can associate with kinesin-1 and dynein motors either directly or via accessory proteins for bi-directional movement. However, the composition of the vesicle-motor complex that contains HTT during axonal transport is unknown. Here we analyze the in vivo movement of 16 Rab GTPases within Drosophila larval axons and show that HTT differentially influences the movement of a particular sub-set of these Rab-containing vesicles. While reduction of HTT perturbed the bi-directional motility of Rab3 and Rab19-containing vesicles, only the retrograde motility of Rab7-containing vesicles was disrupted with reduction of HTT. Interestingly, reduction of HTT stimulated the anterograde motility of Rab2-containing vesicles. Simultaneous dual-view imaging revealed that HTT and Rab2, 7 or 19 move together during axonal transport. Collectively, our findings indicate that HTT likely influences the motility of different Rab-containing vesicles and Rab-mediated functions. These findings have important implications for our understanding of the complex role HTT plays within neurons normally, which when disrupted may lead to neuronal death and disease.


Human Molecular Genetics | 2014

Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport

Kunsang Dolma; Gary J. Iacobucci; Kan Hong Zheng; Jayasha Shandilya; Eneda Toska; Joseph A. White; Elizabeth Spina; Shermali Gunawardena

Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of control and regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. We previously showed that presenilin (PS), a gene involved in Alzheimers disease (AD), influences kinesin-1 and dynein function in vivo. Here, we show that these PS-mediated effects on motor protein function are via a pathway that involves glycogen synthase kinase-3β (GSK-3β). PS genetically interacts with GSK-3β in an activity-dependent manner. Excess of active GSK-3β perturbed axonal transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein. These GSK-3β-mediated axonal defects do not appear to be caused by disruptions or alterations in microtubules (MTs). Excess of non-functional GSK-3β did not affect axonal transport. Strikingly, GSK-3β-activity-dependent axonal transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3β are required for normal motor protein function. Our observations propose a model, in which PS likely plays a role in regulating GSK-3β activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during the motility of vesicles within axons.

Collaboration


Dive into the Shermali Gunawardena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge