Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sherri M. Jones is active.

Publication


Featured researches published by Sherri M. Jones.


Journal of Clinical Investigation | 2008

Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice

Yoko Nakano; Chantal M. Longo-Guess; David E. Bergstrom; William M. Nauseef; Sherri M. Jones; Botond Banfi

In humans, hereditary inactivation of either p22(phox) or gp91(phox) leads to chronic granulomatous disease (CGD), a severe immune disorder characterized by the inability of phagocytes to produce bacteria-destroying ROS. Heterodimers of p22(phox) and gp91(phox) proteins constitute the superoxide-producing cytochrome core of the phagocyte NADPH oxidase. In this study, we identified the nmf333 mouse strain as what we believe to be the first animal model of p22(phox) deficiency. Characterization of nmf333 mice revealed that deletion of p22(phox) inactivated not only the phagocyte NADPH oxidase, but also a second cytochrome in the inner ear epithelium. As a consequence, mice of the nmf333 strain exhibit a compound phenotype consisting of both a CGD-like immune defect and a balance disorder caused by the aberrant development of gravity-sensing organs. Thus, in addition to identifying a model of p22(phox)-dependent immune deficiency, our study indicates that a clinically identifiable patient population with an otherwise cryptic loss of gravity-sensor function may exist. Thus, p22(phox) represents a shared and essential component of at least 2 superoxide-producing cytochromes with entirely different biological functions. The site of p22(phox) expression in the inner ear leads us to propose what we believe to be a novel mechanism for the control of vestibular organogenesis.


The Journal of Neuroscience | 2009

Otoferlin Is Critical for a Highly Sensitive and Linear Calcium-Dependent Exocytosis at Vestibular Hair Cell Ribbon Synapses

Didier Dulon; Saaid Safieddine; Sherri M. Jones; Christine Petit

Otoferlin, a C2-domain-containing Ca2+ binding protein, is required for synaptic exocytosis in auditory hair cells. However, its exact role remains essentially unknown. Intriguingly enough, no balance defect has been observed in otoferlin-deficient (Otof−/−) mice. Here, we show that the vestibular nerve compound action potentials evoked during transient linear acceleration ramps in Otof−/− mice display higher threshold, lower amplitude, and increased latency compared with wild-type mice. Using patch-clamp capacitance measurement in intact utricles, we show that type I and type II hair cells display a remarkable linear transfer function between Ca2+ entry, flowing through voltage-activated Ca2+ channels, and exocytosis. This linear Ca2+ dependence was observed when changing the Ca2+ channel open probability or the Ca2+ flux per channel during various test potentials. In Otof−/− hair cells, exocytosis displays slower kinetics, reduced Ca2+ sensitivity, and nonlinear Ca2+ dependence, despite morphologically normal synapses and normal Ca2+ currents. We conclude that otoferlin is essential for a high-affinity Ca2+ sensor function that allows efficient and linear encoding of low-intensity stimuli at the vestibular hair cell synapse.


Hearing Research | 1999

Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice

Sherri M. Jones; Lawrence C. Erway; Rebecca A. Bergstrom; John C. Schimenti; Timothy A. Jones

UNLABELLED Vestibular evoked potentials (VsEPs) were measured in normal mice and in mice homozygous for the head tilt mutation (het/het, abbr. het). The het mice lack otoconia, the inertial mass critical for natural stimulation of inner ear gravity receptors. Our findings demonstrate that vestibular neural responses to pulsed linear acceleration are absent in het mice. THE RESULTS (1) confirm that adequate sensory stimuli fail to activate gravity receptors in the het model; and (2) serve as definitive evidence that far-field vestibular responses to pulsed linear acceleration depend critically on otolith end organs. The C57BL/6JEi-het mouse may be an excellent model of gravity receptor sensory deprivation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection?

Patrick M. Fuller; Timothy A. Jones; Sherri M. Jones; Charles A. Fuller

Chronic exposure to increased force environments (+G) has pronounced effects on the circadian and homeostatic regulation of body temperature (Tb), ambulatory activity (Act), heart rate, feeding, and adiposity. By using the Brn 3.1 knockout mouse, which lacks vestibular hair cells, we recently described a major role of the vestibular system in mediating some of these adaptive responses. The present study used the C57BL/6JEi-het mouse strain (het), which lacks macular otoconia, to elucidate the contribution of specific vestibular receptors. In this study, eight het and eight WT mice were exposed to 2G for 8 weeks by means of chronic centrifugation. In addition, eight het and eight WT mice were maintained as 1G controls in similar conditions. Upon 2G exposure, the WT exhibited a decrease in Tb and an attenuated Tb circadian rhythm. Act means and rhythms also were attenuated. Body mass and food intake were significantly lower than the 1G controls. After 8 weeks, percent body fat was significantly lower in the WT mice (P < 0.0001). In contrast, the het mice did not exhibit a decrease in mean Tb and only a slight decrease in Tb circadian amplitude. het Act levels were attenuated similarly to the WT mice. Body mass and food intake were only slightly attenuated in the het mice, and percent body fat, after 8 weeks, was not different in the 2G het group. These results link the vestibular macular receptors with specific alterations in homeostatic and circadian regulation.


Hearing Research | 1999

Short latency compound action potentials from mammalian gravity receptor organs.

Timothy A. Jones; Sherri M. Jones

Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50,000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.


Hearing Research | 2004

Gravity receptor function in mice with graded otoconial deficiencies

Sherri M. Jones; Lawrence C. Erway; Kenneth R. Johnson; Heping Yu; Timothy A. Jones

The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.


Journal of Clinical Investigation | 2013

Tricellulin deficiency affects tight junction architecture and cochlear hair cells

Gowri Nayak; Sue I. Lee; Rizwan Yousaf; Stephanie E. Edelmann; Claire Trincot; Christina M. Van Itallie; Ghanshyam P. Sinha; Maria Rafeeq; Sherri M. Jones; Inna A. Belyantseva; James M. Anderson; Andrew Forge; Gregory I. Frolenkov; Saima Riazuddin

The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin.


Journal of Biological Chemistry | 2009

Slc4a11 gene disruption in mice: Cellular targets of sensorineuronal abnormalities

Ivan Lopez; Mark I. Rosenblatt; Charles Kim; Gary C. Galbraith; Sherri M. Jones; Liyo Kao; Debra Newman; Weixin Liu; Stacey Yeh; Alexander Pushkin; Natalia Abuladze; Ira Kurtz

NaBC1 (the SLC4A11 gene) belongs to the SLC4 family of sodium-coupled bicarbonate (carbonate) transporter proteins and functions as an electrogenic sodium borate cotransporter. Mutations in SLC4A11 cause either corneal abnormalities (corneal hereditary dystrophy type 2) or a combined auditory and visual impairment (Harboyan syndrome). The role of NaBC1 in sensory systems is poorly understood, given the difficulty of studying patients with NaBC1 mutations. We report our findings in Slc4a11−/− mice generated to investigate the role of NaBC1 in sensorineural systems. In wild-type mice, specific NaBC1 immunoreactivity was detected in fibrocytes of the spiral ligament, from the basal to the apical portion of the cochlea. NaBC1 immunoreactivity was present in the vestibular labyrinth, in stromal cells underneath the non-immunoreactive sensory epithelia of the macula utricle, sacule, and crista ampullaris, and the membranous vestibular labyrinth was collapsed. Both auditory brain response and vestibular evoked potential waveforms were significantly abnormal in Slc4a11−/− mice. In the cornea, NaBC1 was highly expressed in the endothelial cell layer with less staining in epithelial cells. However, unlike humans, the corneal phenotype was mild with a normal slit lamp evaluation. Corneal endothelial cells were morphologically normal; however, both the absolute height of the corneal basal epithelial cells and the relative basal epithelial cell/total corneal thickness were significantly increased in Slc4a11−/− mice. Our results demonstrate for the first time the importance of NaBC1 in the audio-vestibular system and provide support for the hypothesis that SLC4A11 should be considered a potential candidate gene in patients with isolated sensorineural vestibular hearing abnormalities.


Human Molecular Genetics | 2009

Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation

Ruishuang Geng; Scott F. Geller; Toshinori Hayashi; Catherine A. Ray; Thomas A. Reh; Olivia Bermingham-McDonogh; Sherri M. Jones; Charles G. Wright; Sami Melki; Yoshikazu Imanishi; Krzysztof Palczewski; Kumar N. Alagramam; John G. Flannery

Usher syndrome 3A (USH3A) is an autosomal recessive disorder characterized by progressive loss of hearing and vision due to mutation in the clarin-1 (CLRN1) gene. Lack of an animal model has hindered our ability to understand the function of CLRN1 and the pathophysiology associated with USH3A. Here we report for the first time a mouse model for ear disease in USH3A. Detailed evaluation of inner ear phenotype in the Clrn1 knockout mouse (Clrn1(-/-)) coupled with expression pattern of Clrn1 in the inner ear are presented here. Clrn1 was expressed as early as embryonic day 16.5 in the auditory and vestibular hair cells and associated ganglionic neurons, with its expression being higher in outer hair cells (OHCs) than inner hair cells. Clrn1(-/-) mice showed early onset hearing loss that rapidly progressed to severe levels. Two to three weeks after birth (P14-P21), Clrn1(-/-) mice showed elevated auditory-evoked brainstem response (ABR) thresholds and prolonged peak and interpeak latencies. By P21, approximately 70% of Clrn1(-/-) mice had no detectable ABR and by P30 these mice were deaf. Distortion product otoacoustic emissions were not recordable from Clrn1(-/-) mice. Vestibular function in Clrn1(-/-) mice mirrored the cochlear phenotype, although it deteriorated more gradually than cochlear function. Disorganization of OHC stereocilia was seen as early as P2 and by P21 OHC loss was observed. In sum, hair cell dysfunction and prolonged peak latencies in vestibular and cochlear evoked potentials in Clrn1(-/-) mice strongly indicate that Clrn1 is necessary for hair cell function and associated neural activation.


Hearing Research | 1995

The tonotopic map in the embryonic chicken cochlea

Sherri M. Jones; Timothy A. Jones

The purpose of the present study was to determine the tonotopic map in the chicken cochlea at 19 days of incubation (E19) by obtaining characteristic frequencies (CFs) for primary afferents, labeling the characterized neurons, and documenting their projections to the papilla. The lowest and highest CFs recorded were 188 and 1623 Hz respectively. The embryonic tonotopic map coincided with maps reported for post-hatch chicks. There were no evidence that neurons selective to low frequencies project inappropriately to more basal locations of the embryonic papilla. Linear regression was used to estimate the frequency gradient (b = 0.037 +/- 0.012 In Hz/% [b +/- SEb]) and intercept (In C, where C = 111 Hz) of the semilog plot of frequency versus cochlear position (in % distance from apex). From these estimates the octave distribution was calculated to be 18.7%/octave or 0.58 mm/octave. These quantities were not significantly different from those found in post hatch chickens. We conclude that the tonotopic map of the avian cochlea for CFs between 100 and 1700 Hz is stable and relatively mature from age E19 to post-hatch day 21 (P21). The most striking sign of immaturity in the E19 embryo is the limited range of high CFs. We offer the hypothesis that, between the ages of E19 and P21, improvements in middle ear admittance alone or in combination with functional maturation of the cochlear base may be the principal factors responsible for the appearance of adult-like high CF limits and not an apically shifting tonotopic map.

Collaboration


Dive into the Sherri M. Jones's collaboration.

Top Co-Authors

Avatar

Timothy A. Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Sarath Vijayakumar

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge