Sherry A. Mueller
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sherry A. Mueller.
Environmental Science & Technology | 2010
Timothy J. Wallington; Maria Grahn; James E. Anderson; Sherry A. Mueller; Mats Williander; Kristian Lindgren
The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.
Water Environment Research | 2009
Sherry A. Mueller; James E. Anderson; Byung R. Kim; James C. Ball
Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor (r2 values ranged from < 0.01 to 0.47), and the ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL.
Water Environment Research | 2009
James E. Anderson; Tiffany V. Lofton; Byung R. Kim; Sherry A. Mueller
Membrane bioreactors (MBRs) have been installed at automotive plants to treat metalworking fluid (MWF) wastewaters, which are known to contain toxic and/or recalcitrant organic compounds. A laboratory study was conducted to evaluate treatment of a simulated wastewater prepared from a semisynthetic MWF, which contains two such compounds, dicyclohexylamine (DCHA) and ethylenediaminetetraacetic acid (EDTA). Primary findings were as follows: During stable operating periods, almost all chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and EDTA were removed (by > 96%). During somewhat unstable periods, COD removal was still extremely robust, but removal of EDTA and TKN were sensitive to prolonged episodes of low dissolved oxygen. Nitrogen mass balance suggested 30 to 40% TKN removal by assimilation and 60 to 70% by nitrification (including up to 34% TKN removal via subsequent denitrification). Dicyclohexylamine appeared to be readily biodegraded. Maximum DCHA and EDTA degradation rates between pH 7 and 8 were found. An Arthrobacter sp. capable of growth on DCHA as the sole source of carbon and energy was isolated.
Science | 1998
John F. Quensen; Sherry A. Mueller; Mahendra K. Jain; James M. Tiedje
Energy & Fuels | 2010
James E. Anderson; U. Kramer; Sherry A. Mueller; Timothy J. Wallington
Energy & Fuels | 2010
V. F. Andersen; James E. Anderson; Timothy J. Wallington; Sherry A. Mueller; O. J. Nielsen
Environmental Science & Technology | 2009
Maria Grahn; Christian Azar; Mats Williander; James E. Anderson; Sherry A. Mueller; Timothy J. Wallington
Energy & Fuels | 2010
V. F. Andersen; James E. Anderson; Timothy J. Wallington; Sherry A. Mueller; O. J. Nielsen
Environmental Science & Technology | 2001
John F. Quensen; James M. Tiedje; Mahendra K. Jain; Sherry A. Mueller
Energy & Fuels | 2016
Freja From Østerstrøm; James E. Anderson; Sherry A. Mueller; Travis Collings; James C. Ball; Timothy J. Wallington