Sherry L. Voytik-Harbin
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sherry L. Voytik-Harbin.
Journal of Cellular Biochemistry | 1997
Sherry L. Voytik-Harbin; Andrew O. Brightman; Meredith R. Kraine; Beverly Z. Waisner; Stephen F. Badylak
When implanted as a biomaterial for tissue replacement, selected submucosal layers of porcine small intestine induce site‐specific tissue remodeling. Small intestinal submucosa (SIS), as isolated, is primarily an acellular extracellular matrix material. In an attempt to discover the components of small intestinal submucosa which are able to induce this tissue remodeling, the material was extracted and extracts were tested for the ability to stimulate Swiss 3T3 fibroblasts to synthesize DNA and proliferate. Each of the four different extracts of small intestinal submucosa had measurable cell‐stimulating activity when analyzed in both a whole cell proliferation assay (alamarBlue dye reduction) and a DNA synthesis assay ([3H]‐thymidine incorporation). Proteins extracted from SIS with 2 M urea induced activity profiles in the two assays which were very similar to the activity profiles of basic fibroblast growth factor (FGF‐2) in the assays. As well, the changes in cell morphology in response to the extracted proteins mimicked the changes induced by FGF‐2. Neutralization experiments with specific antibodies to this growth factor confirmed the presence of FGF‐2 and indicated that it was responsible for 60% of the fibroblast‐stimulating activity of the urea extract of small intestinal submucosa. Western blot analysis with a monoclonal antibody specific for FGF‐2 detected a reactive doublet at approximately 19 kDa and further confirmed the presence of FGF‐2. Cell stimulating activity of proteins extracted from SIS with 4 M guanidine was neutralized by an antibody specific for transforming growth factor β (TGFβ). Changes in the morphology of the fibroblasts exposed to this extract were nearly identical to changes induced by TGFβ. Although no reactive protein band was detected at 25 kDa in nonreduced western blot analysis, several bands were reactive at higher molecular weight. The identity of this TGFβ‐related component of small intestinal submucosa is unknown. Identification of FGF‐2 and TGFβ‐related activities in SIS, two growth factors known to significantly affect critical processes of tissue development and differentiation, provides the opportunity to further elucidate the mechanisms by which this extracellular matrix biomaterial modulates wound healing and tissue remodeling. J. Cell. Biochem. 67:478–491, 1997.
Tissue Engineering | 1996
Jason P. Hodde; Stephen F. Badylak; Andrew O. Brightman; Sherry L. Voytik-Harbin
Small intestinal submucosa (SIS) is a resorbable biomaterial that induces tissue remodeling when used as a xenogeneic tissue graft in animal models of vascular, urologic, dermatologic, neurologic, and orthopedic injury. Determination of the composition and structure of naturally occurring biomaterials such as SIS that promote tissue remodeling is necessary for the greater understanding of their role in wound healing. Since glycosaminoglycans (GAGs) are important components of extracellular matrix (ECM) and SIS is primarily an ECM-based material, studies were performed to identify the species of glycosaminoglycans present in SIS. Porcine SIS was chemically extracted and the extracts were analyzed for uronic acid. The extractable uronic acid content was determined to be 47.7 micromol/g (approximately 21 microg GAG/mg) of the dry weight of the SIS tissue. Using electrophoretic separation of GAGs on cellulose acetate membranes, hyaluronic acid, heparin, heparan sulfate, chondroitin sulfate A, and dermatan sulfate were identified. Digestion of specific GAGs with selective enzymes confirmed the presence of these GAG species. Two GAGs common to other tissues with large basement membrane ECM components, keratan sulfate and chondroitin sulfate C, were not detected in the SIS extracts. Identification of specific GAGs in the composition of the ECM-rich SIS provides a starting point toward a more comprehensive understanding of the structure and function of this naturally occurring biomaterial with favorable in vivo tissue remodeling properties.
In Vitro Cellular & Developmental Biology – Animal | 1998
Sherry L. Voytik-Harbin; Andrew O. Brightman; Beverly Z. Waisner; Carlton H. Lamar; Stephen F. Badylak
SummaryCell proliferation assays are essential to developing an understanding of the molecular mechanisms that modulate cell growth and differentiation. In this paper, we describe the application of alamarBlue, a new and versatile metabolic dye, for the detection of Swiss 3T3 fibroblast proliferation and/or survival. As a redox indicator, alamarBlue is reduced by reactions innate to cellular metabolism and, therefore, provides an indirect measure of viable cell number. Various assay parameters were optimized for a 96-well format to achieve a detectable range of fibroblast cell number from 100 to 20 000 cells/well, which is similar to that obtained with traditional (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and [3H]thymidine assay techniques. Standard (reference) curves generated with a known fibroblast stimulator were used to facilitate quantitation and comparison of unknown test substances. The alamarBlue assay offers the advantages of technical simplicity, freedom from radioisotopes, versatility in detection, no extraction, and excellent reproducibility and sensitivity. We anticipate that this simple and versatile alamarBlue assay, when used alone or in conjunction with other bioassays, will be a useful tool for investigating the complex mechanisms of cellular proliferation.
Microvascular Research | 2010
Paul J. Critser; S.T. Kreger; Sherry L. Voytik-Harbin; Mervin C. Yoder
Developing tissue engineering approaches to generate functional vascular networks is important for improving treatments of peripheral and cardiovascular disease. Endothelial colony forming cells (ECFCs) are an endothelial progenitor cell (EPC) population defined by high proliferative potential and an ability to vascularize collagen-based matrices in vivo. Little is known regarding how physical properties of the local cell microenvironment guide vessel formation following EPC transplantation. In vitro evidence suggests that collagen matrix stiffness may modulate EPC vessel formation. The present study determined the ability of 3D collagen matrix physical properties, varied by changing collagen concentration, to influence ECFC vasculogenesis in vivo. Human umbilical cord blood ECFCs were cultured within matrices for 18 h in vitro and then fixed for in vitro analysis or implanted subcutaneously into the flank of immunodeficient mice for 14 days. We report that increasing collagen concentration significantly decreased ECFC derived vessels per area (density), but significantly increased vessel sizes (total cross sectional area). These results demonstrate that the physical properties of collagen matrices influence ECFC vasculogenesis in vivo and that by modulating these properties, one can guide vascularization.
Nature Biotechnology | 2014
Nutan Prasain; Man Ryul Lee; Sasidhar Vemula; Jonathan Luke Meador; Momoko Yoshimoto; Michael J. Ferkowicz; Alexa Fett; Manav Gupta; Brian M. Rapp; Mohammad Reza Saadatzadeh; Michael Ginsberg; Olivier Elemento; Younghee Lee; Sherry L. Voytik-Harbin; Hyung Min Chung; Ki Sung Hong; Emma Reid; Christina O'Neill; Reinhold Medina; Alan W. Stitt; Michael P. Murphy; Shahin Rafii; Hal E. Broxmeyer; Mervin C. Yoder
The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony–forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel–forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >108 ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.
Biopolymers | 2010
Seth Kreger; Brett J. Bell; J. L. Bailey; E. Stites; J. L. Kuske; B. Waisner; Sherry L. Voytik-Harbin
Despite extensive use of type I collagen for research and medical applications, its fibril-forming or polymerization potential has yet to be fully defined and exploited. Here, we describe a type I collagen formulation that is acid solubilized from porcine skin collagen (PSC), quality controlled based upon polymerization potential, and well suited as a platform polymer for preparing three-dimensional (3D) culture systems and injectable/implantable in vivo cellular microenvironments in which both relevant biochemical and biophysical parameters can be precision-controlled. PSC is compared with three commercial collagens in terms of composition and purity as well as polymerization potential, which is described by kinetic parameters and fibril microstructure and mechanical properties of formed matrices. When subjected to identical polymerization conditions, PSC showed significantly decreased polymerization times compared to the other collagens and yielded matrices with the greatest mechanical integrity and broadest range of mechanical properties as characterized in oscillatory shear, uniaxial extension, and unconfined compression. Compositional and intrinsic viscosity analyses suggest that the enhanced polymerization potential of PSC may be attributed to its unique oligomer composition. Collectively, this work demonstrates the importance of standardizing next generation collagen formulations based upon polymerization potential and provides preliminary insight into the contribution of oligomers to collagen polymerization properties.
Methods in Cell Biology | 2001
Sherry L. Voytik-Harbin; Bartlorniej Rajwa; J.Paul Robinson
In summary, noninvasive and nondestructive imaging modalities such as reflection and autofluorescence can readily be used in conjunction with the 3-D optical sectioning capabilities of confocal and multiphoton microscopy to investigate biological processes within living systems. The elimination of specimen fixation and extensive processing reduces the possibility of structural artifacts and facilitates repeat observations within a single sample. Therefore, information representing up to four dimensions (x, y, z, and time) can be readily collected and reconstructed for purposes of visualization and/or quantitative analysis. An advantage of using the techniques described in this chapter is the possibility of performing quantitative measurement of cell size, surface area, volume, depth (in matrix), orientation, receptor density, as well as fluorescence-based indicators of phenotype and function. At present, we are effectively utilizing these techniques to study collagen fibrillogenesis and ECM assembly, structural aspects of ECM-based biomaterials, as well as cell interactions within 3-D matrices (e.g., migration). New insights provided by these techniques regarding ECM and ECM-cell signaling will further the understanding of tissue structure and function and contribute to the development of new and improved strategies for tissue repair, replacement, and maintenance.
Cell Proliferation | 2011
P. J. Critser; Sherry L. Voytik-Harbin; Mervin C. Yoder
A great deal of attention has been recently focused on understanding the role that bone marrow‐derived putative endothelial progenitor cells (EPC) may play in the process of neoangiogenesis. However, recent data indicate that many of the putative EPC populations are comprised of various haematopoietic cell subsets with proangiogenic activity, but these marrow‐derived putative EPC fail to display vasculogenic activity. Rather, this property is reserved for a rare population of circulating viable endothelial cells with colony‐forming cell (ECFC) ability. Indeed, human ECFC possess clonal proliferative potential, display endothelial and not haematopoietic cell surface antigens, and display in vivo vasculogenic activity when suspended in an extracellular matrix and implanted into immunodeficient mice. Furthermore, human vessels derived became integrated into the murine circulatory system and eventually were remodelled into arterial and venous vessels. Identification of this population now permits determination of optimal type I collagen matrix microenvironment into which the cells should be embedded and delivered to accelerate and even pattern number and size of blood vessels formed, in vivo. Indeed, altering physical properties of ECFC‐collagen matrix implants changed numerous parameters of human blood vessel formation, in host mice. These recent discoveries may permit a strategy for patterning vascular beds for eventual tissue and organ regeneration.
Biopolymers | 2011
J. L. Bailey; P. J. Critser; Catherine Whittington; J. L. Kuske; Mervin C. Yoder; Sherry L. Voytik-Harbin
Elucidation of mechanisms underlying collagen fibril assembly and matrix-induced guidance of cell fate will contribute to the design and expanded use of this biopolymer for research and clinical applications. Here, we define how Type I collagen oligomers affect in-vitro polymerization kinetics as well as fibril microstructure and mechanical properties of formed matrices. Monomers and oligomers were fractionated from acid-solubilized pig skin collagen and used to generate formulations varying in monomer/oligomer content or average polymer molecular weight (AMW). Polymerization half-times decreased with increasing collagen AMW and closely paralleled lag times, indicating that oligomers effectively served as nucleation sites. Furthermore, increasing AMW yielded matrices with increased interfibril branching and had no correlative effect on fibril density or diameter. These microstructure changes increased the stiffness of matrices as evidenced by increases in both shear storage and compressive moduli. Finally, the biological relevance of modulating collagen AMW was evidenced by the ability of cultured endothelial colony forming cells to sense associated changes in matrix physical properties and alter vacuole and capillary-like network formation. This work documents the importance of oligomers as another physiologically-relevant design parameter for development and standardization of polymerizable collagen formulations to be used for cell culture, regenerative medicine, and engineered tissue applications.
Journal of Biomechanical Engineering-transactions of The Asme | 2009
Blayne A. Roeder; Klod Kokini; Sherry L. Voytik-Harbin
The next generation of medical devices and engineered tissues will require development of scaffolds that mimic the structural and functional properties of the extracellular matrix (ECM) component of tissues. Unfortunately, little is known regarding how ECM microstructure participates in the transmission of mechanical load information from a global (tissue or construct) level to a level local to the resident cells ultimately initiating relevant mechanotransduction pathways. In this study, the transmission of mechanical strains at various functional levels was determined for three-dimensional (3D) collagen ECMs that differed in fibril microstructure. Microstructural properties of collagen ECMs (e.g., fibril density, fibril length, and fibril diameter) were systematically varied by altering in vitro polymerization conditions. Multiscale images of the 3D ECM macro- and microstructure were acquired during uniaxial tensile loading. These images provided the basis for quantification and correlation of strains at global and local levels. Results showed that collagen fibril microstructure was a critical determinant of the 3D global and local strain behaviors. Specifically, an increase in collagen fibril density reduced transverse strains in both width and thickness directions at both global and local levels. Similarly, collagen ECMs characterized by increased fibril length and decreased fibril diameter exhibited increased strain in width and thickness directions in response to loading. While extensional strains measured globally were equivalent to applied strains, extensional strains measured locally consistently underpredicted applied strain levels. These studies demonstrate that regulation of collagen fibril microstructure provides a means to control the 3D strain response and strain transfer properties of collagen-based ECMs.