Shi-Bin Wang
Huaqiao University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shi-Bin Wang.
International Journal of Nanomedicine | 2017
Biao-Qi Chen; Ranjith Kumar Kankala; Ai-Zheng Chen; Ding-Zhu Yang; Xiaoxia Cheng; Ni-Na Jiang; Kai Zhu; Shi-Bin Wang
Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF) nanoparticles were incorporated into poly(l-lactic acid) (PLLA) to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2). The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1) and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8) significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP), osteocalcin (OC) and collagen 1 (COL-1). These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering.
International Journal of Nanomedicine | 2012
Ai-Zheng Chen; Guang-Ya Wang; Shi-Bin Wang; Li Li; Yuangang Liu; Chen Zhao
Background The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO2-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO2 (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO2 (SEDS). Methods Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an “injector” was utilized in the suspension delivery system. Results After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. Conclusion Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system.
Toxicology Letters | 2012
Ai-Zheng Chen; Xiao-Fen Lin; Shi-Bin Wang; Li Li; Yuangang Liu; Li Ye; Guang-Ya Wang
The biocompatibility of Fe₃O₄-poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) magnetic microspheres (Fe₃O₄-PLLA-PEG-PLLA MMPs) prepared in a process of suspension-enhanced dispersion by supercritical CO₂ (SpEDS) was evaluated at various levels: cellular, molecular, and integrated. At the cellular level, the investigations of cytotoxicity and intracellular reactive oxygen species (ROS) generation indicate that the polymer-coated MMPs (2.0 mg/mL) had a higher toxicity than uncoated Fe₃O₄ nanoparticles, which led to about 20% loss of cell viability and an increase (0.2 fold) in ROS generation; the differences were not statistically significant (p > 0.05). However, an opposite phenomenon was observed in tests of hemolysis, which showed that the MMPs displayed the weakest hemolytic activity, namely only about 6% at the highest concentration (20 mg/mL). This phenomenon reveals that polymer-coated MMPs created less toxicity in red blood cells than uncoated Fe₃O₄ nanoparticles. At the molecular level, the MMPs were shown to be less genotoxic than Fe₃O₄ nanoparticles by measuring the micronucleus (MN) frequency in CHO-K1 cells. Furthermore, the mRNA expression of pro-inflammatory cytokines demonstrates that polymer-coated MMPs elicited a less intense secretion of pro-inflammatory cytokines than uncoated Fe₃O₄ nanoparticles. Acute toxicity tests of MMPs show quite a low toxicity, with an LD₅₀ > 1575.00 mg/kg. The evidence of low toxicity presented in the results indicates that the Fe₃O₄-PLLA-PEG-PLLA MMPs from the SpEDS process have great potential for use in biomedical applications.
International Journal of Nanomedicine | 2015
Yuangang Liu; Qinglei Dai; Shi-Bin Wang; Qiongjia Deng; Wen-Guo Wu; Ai-Zheng Chen
To solve the problem of synthesized magnetic nanoparticles in cancer therapy, a new drug delivery system synthesized from bacteria was used to load cytosine arabinoside (Ara-C). Genipin (GP) and poly-l-glutamic acid (PLGA) were selected as dual cross-linkers. The preparation and characterization of Ara-C-loaded GP-PLGA-modified bacterial magnetosomes (BMs) (ABMs-P), as well as their in vitro antitumor effects, were all investigated. Transmission electron micrographs (TEM) and Fourier transform infrared (FTIR) spectroscopy suggested that Ara-C could be bound to the membrane of BMs modified by GP-PLGA. The diameters of the BMs and ABMs-P were 42.0±8.6 nm and 74.9±8.2 nm, respectively. The zeta potential revealed that the nanoparticles were stable. Moreover, this system exhibited optimal drug-loading properties and long-term release behavior. The optimal encapsulation efficiency and drug-loading were 64.1%±6.6% and 38.9%±2.4%, respectively, and ABMs-P could effectively release 90% Ara-C within 40 days, without the release of an initial burst. In addition, in vitro antitumor experiments elucidated that ABMs-P is cytotoxic to HL-60 cell lines, with an inhibition rate of 95%. The method of coupling drugs on BMs using dual cross-linkers is effective, and our results reveal that this new system has potential applications for drug delivery in the future.
Materials | 2013
Qiongjia Deng; Yuangang Liu; Shi-Bin Wang; Maobin Xie; Shenjian Wu; Ai-Zheng Chen; Wen-Guo Wu
To ease the side effects triggered by cytosine arabinoside (Ara-C) for acute leukemia treatment, a novel magnetic targeting anti-tumor drug delivery system was constructed through bacterial magnetosomes (BMs) from Magnetospirillum magneticum AMB-1 combined with Ara-C by crosslinking of genipin (GP). The results showed that Ara-C could be bonded onto the membrane surface of BMs effectively through chemical crosslinking induced by dual hand reagents GP. The average diameters of BMs and Ara-C-coupled BMs (ABMs) were 42.0 ± 8.6 and 72.7 ± 6.0 nm respectively, and the zeta potentials (−38.1 ± 9.1) revealed that these systems were stable, confirming the stability of the system. The optimal encapsulation efficiency and drug loading were 89.05% ± 2.33% and 47.05% ± 0.64% respectively when crosslinking reaction lasted for 72 h. The system also presented long-term stability and release behaviors without initial burst release (Ara-C could be released 80% within three months). Our results indicate that BMs have great potential in biomedical and clinical fields as a novel anti-tumor drug carrier.
Biofabrication | 2017
Ranjith Kumar Kankala; Kai Zhu; Jun Li; Chunsheng Wang; Shi-Bin Wang; Ai-Zheng Chen
Fabrication of tissue-/organ-like structures at arbitrary geometries by mimicking the properties of the complex material offers enormous interest to the research and clinical applicability in cardiovascular diseases. Patient-specific, durable, and realistic three-dimensional (3D) cardiac models for anatomic consideration have been developed for education, pro-surgery planning, and intra-surgery guidance. In cardiac tissue engineering (TE), 3D printing technology is the most convenient and efficient microfabrication method to create biomimetic cardiovascular tissue for the potential in vivo implantation. Although booming rapidly, this technology is still in its infancy. Herein, we provide an emphasis on the application of this technology in clinical practices, micro- and nanoscale fabrications by cardiac TE. Initially, we will give an overview on the fabrication methods that can be used to synthesize the arbitrary 3D components with controlled features and will subsequently highlight the current limitations and future perspective of 3D printing used for cardiovascular diseases.
Science China-life Sciences | 2014
Ai-Zheng Chen; Tingting Dang; Shi-Bin Wang; Na Tang; Yuangang Liu; Wen-Guo Wu
The in vitro and in vivo anti-tumor efficacy of methotrexate-loaded Fe3O4-poly-L-lactide-poly(ethylene glycol)-poly-L-lactide magnetic composite microspheres (MTX-Fe3O4-PLLA-PEG-PLLA MCMs, MMCMs), which were produced by co-precipitation (C) and microencapsulation (M) in a supercritical process, was evaluated at various levels: cellular, molecular, and integrated. The results at the cellular level indicate that MMCMs (M) show a better anti-proliferation activity than raw MTX and could induce morphological changes of cells undergoing apoptosis. At the molecular level, MMCMs (M) lead to a significantly higher relative mRNA expression of bax/bcl-2 and caspase-3 than MMCMs (C) at 10 μg mL−1 (P<0.01); and the pro-caspase-3 protein expression measured by Western blot analysis also demonstrates that MMCMs (M) can effectively activate pro-caspase-3. At the integrated level, mice bearing a sarcoma-180 tumor are used; in vivo anti-tumor activity tests reveal that MMCMs (M) with magnetic induction display a much higher tumor suppression rate and lower toxicity than raw MTX. Pharmacokinetic studies show that MMCMs (M) with magnetic induction significantly increase the accumulation of MTX in the tumor tissue compared with the other treatments. These results suggest that the MMCMs (M) prepared by the SpEDS process have great potential to play a positive role in the magnetic targeted therapy field.
Materials | 2014
Hu-Fan Song; Ai-Zheng Chen; Shi-Bin Wang; Yong-Qiang Kang; Shi-Fu Ye; Yuangang Liu; Wen-Guo Wu
Using ammonium bicarbonate (AB) particles as a porogen, chitosan (CS)-based hemostatic porous sponges were prepared in supercritical carbon dioxide due to its low viscosity, small surface tension, and good compatibility with organic solvent. Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that the chemical compositions of CS and poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) were not altered during the phase inversion process. The morphology and structure of the sponge after the supercritical fluid (SCF) process were observed by scanning electron microscopy (SEM). The resulting hemostatic sponges showed a relatively high porosity (about 80%) with a controllable pore size ranging from 0.1 to 200 μm. The concentration of PVM/MA had no significant influence on the porosity of the sponges. Comparative experiments on biological assessment and hemostatic effect between the resulting sponges and Avitene® were also carried out. With the incorporation of PVM/MA into the CS-based sponges, the water absorption rate of the sponges increased significantly, and the CS-PVM/MA sponges showed a similar water absorption rate (about 90%) to that of Avitene®. The results of the whole blood clotting experiment and animal experiment also demonstrated that the clotting ability of the CS-PVM/MA sponges was similar to that of Avitene®. All these results elementarily verified that the sponges prepared in this study were suitable for hemostasis and demonstrated the feasibility of using SCF-assisted phase inversion technology to produce hemostatic porous sponges.
Journal of Biomaterials Applications | 2015
Ran Zhang; Shi-Bin Wang; Ai-Zheng Chen; Weiguang Chen; Yuangang Liu; Wen-Guo Wu; Yong-Qiang Kang; Shi-Fu Ye
Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N′, N′-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs.
Materials | 2013
Yong-Qiang Kang; Chen Zhao; Ai-Zheng Chen; Shi-Bin Wang; Yuangang Liu; Wen-Guo Wu; Xiao-Qian Su
Lysozyme (LSZ)-loaded poly-L-lactide (PLLA) porous microparticles (PMs) were successfully prepared by a compressed CO2 antisolvent process in combination with a water-in-oil emulsion process using LSZ as a drug model and ammonium bicarbonate as a porogen. The effects of different drug loads (5.0%, 7.5% and 10.0%) on the surface morphology, particle size, porosity, tapped density and drug release profile of the harvested PMs were investigated. The results show that an increase in the amount of LSZ added led to an increase in drug load (DL) but a decrease in encapsulation efficiency. The resulting LSZ-loaded PLLA PMs (LSZ-PLLA PMs) exhibited a porous and uneven morphology, with a density less than 0.1 g·cm−3, a geometric mean diameter of 16.9–18.8 μm, an aerodynamic diameter less than 2.8 μm, a fine particle fraction (FPF) of 59.2%–66.8%, and a porosity of 78.2%–86.3%. According to the results of differential scanning calorimetry, the addition of LSZ improved the thermal stability of PLLA. The Fourier transform infrared spectroscopy analysis and circular dichroism spectroscopy measurement reveal that no significant changes occurred in the molecular structures of LSZ during the fabrication process, which was further confirmed by the evaluation of enzyme activity of LSZ. It is demonstrated that the emulsion-combined precipitation with compressed antisolvent (PCA) process could be a promising technology to develop biomacromolecular drug-loaded inhalable carrier for pulmonary drug delivery.