Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi-En Zhu is active.

Publication


Featured researches published by Shi-En Zhu.


Journal of Pineal Research | 2009

Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes.

Jian-Min Shi; Xiuzhi Tian; Guang-Bin Zhou; Liang Wang; Chao Gao; Shi-En Zhu; Shen-Ming Zeng; Jianhui Tian; Guoshi Liu

Abstract:  This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10−11 m. Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10−11, 10−9, 10−7, 10−5 and 10−3 m) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10−9 m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 ± 4.5%, 28 ± 2.4% and 50 ± 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10−7 m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 ± 8.4%, blastocyst rates 35 ± 6.7%) were obtained when both the maturation and culture medium were supplemented with 10−9 m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.


Animal Biotechnology | 2005

Vitrification of mouse embryos at various stages by open-pulled straw (OPS) method.

Guangbin Zhou; Shi-En Zhu; Yun-Peng Hou; Fang Jin; Qi-En Yang; Zhong-Qiang Yang; Guo-Bo Quan; Hong-Ming Tan

This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.


Fertility and Sterility | 2010

Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol pretreatment and relationship to competence

Chang-Liang Yan; Xiangwei Fu; Guang-Bin Zhou; Xue-Ming Zhao; Lun Suo; Shi-En Zhu

OBJECTIVE To investigate the effect of Taxol pretreatment on mitochondrial behaviors in vitrified mouse mature oocytes and their parthenogenetic embryos. DESIGN Experimental animal study. SETTING University research laboratory and state key laboratory. ANIMAL(S) Sexually mature female Kunming white strain mice. INTERVENTION(S) Taxol before vitrification group (Tax). Oocytes were pretreated with M(2) containing 1 mmol/L Taxol for 2 minutes at 37C and then vitrified-warmed using the OPS vitrification procedure. Both ED solution and EDFS30 solution contained 1 mmol/L Taxol. MAIN OUTCOME MEASURE(S) Mitochondrial behaviors examined by fluorescence microscopy technology and fluorescence recovery after photobleaching (FRAP) technology. RESULT(S) In the control group, mitochondria were homogeneously distributed, in slow movement in oocytes, and perinuclearly distributed in 42.6% (n = 115) of their parthenogenetic two-cell embryos. Mitochondria from the toxicity group showed similar localization and movement to those of the control group, but not in the vitrification group. The perinuclear mitochondrial localization pattern of two-cell embryos was statistically significantly lower in both the toxicity (27.2%) and vitrification groups (19.8%) than in the control group. After parthenogenetic activation, the blastocyst formation rate of oocytes in the treated groups (28.1 to 48.6%) was statistically significantly lower than that of control (61.2%), but the rate of Taxol group (47.9%) was statistically significantly higher than that in the vitrification group (28.1%). CONCLUSION(S) Taxol pretreatment before vitrification helps to reduce the mitochondrial disturbance induced by vitrification in oocytes and their parthenogenetic early-stage embryo.


Animal Reproduction Science | 2009

Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes

Xiangwei Fu; Wen-Qing Shi; Qing-Jin Zhang; Xue-Ming Zhao; Chang Liang Yan; Yun-Peng Hou; Guang-Bin Zhou; Zhi-Qiang Fan; Lun Suo; Abuliz Wusiman; Yan-Ping Wang; Shi-En Zhu

This study was designed to determine the effects of Taxol pretreatment on the morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrified porcine oocytes matured in vitro. The result showed that: (1) the rate of normal mitochondria distribution in fresh group (92.85%) was significantly higher (P<0.05) than that in other three groups (toxicity, 72.48%; vitrification, 50.83%; Taxol+vitrification, 69.98%) and Taxol pretreatment significantly (P<0.05) increased the ratio of normal mitochondria distribution in vitrified oocytes; (2) lipid droplets in vitrified oocytes got cracked, resulting in a great number of smaller lipid droplets (diameter <5 microm). The number of lipid droplets (5-10 microm in diameter) in vitrified oocytes pretreated with Taxol was higher (P<0.05) than that in the oocytes without Taxol pretreatment (81.87+/-13.63 vs. 64.27+/-13.72); (3) both toxicity and vitrification cause the difference in the ultrastructure of mitochondria and lipid droplets. Mitochondria were well maintained in the form of typical round and ellipse shape with smooth surface and clear outline and lipid droplets existed in the form of integrity in Taxol pretreatment group. In conclusion, Taxol pretreatment has positive effects on vitrified porcine oocytes matured in vitro in terms of morphology, distribution and ultrastructure of mitochondria and lipid droplets.


PLOS ONE | 2014

Melatonin improves the quality of in vitro produced (IVP) bovine embryos: Implications for blastocyst development, cryotolerance, and modifications of relevant gene expression

Feng Wang; Xiuzhi Tian; YanHua Zhou; Dun Xian Tan; Shi-En Zhu; Yunping Dai; Guoshi Liu

To evaluate the potential effects of melatonin on the kinetics of embryo development and quality of blastocyst during the process of in vitro bovine embryo culture. Bovine cumulus–oocyte complexes (COCs) were fertilized after in vitro maturation. The presumed zygotes were cultured in in vitro culture medium supplemented with or without 10−7 M melatonin. The cleavage rate, 8-cell rate and blastocyst rate were examined to identify the kinetics of embryo development. The hatched blastocyst rate, mortality rate after thawing and the relevant transcript abundance were measured to evaluate the quality of blastocyst. The results showed that melatonin significantly promoted the cleavage rate and 8-cell embryo yield of in vitro produced bovine embryo. In addition, significantly more blastocysts were observed by Day 7 of embryo culture at the presence of melatonin. These results indicated that melatonin accelerated the development of in vitro produced bovine embryos. Following vitrification at Day 7 of embryo culture, melatonin (10−7 M) significantly increased the hatched blastocyst rate from 24 h to 72 h and decreased the mortality rate from 48 h to 72 h after thawing. The presence of melatonin during the embryo culture resulted in a significant increase in the gene expressions of DNMT3A, OCC, CDH1 and decrease in that of AQP3 after thawing. In conclusion, melatonin not only promoted blastocyst yield and accelerated in vitro bovine embryo development, but also improved the quality of blastocysts which was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally important genes.


Theriogenology | 2011

Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes

Xiang-Wei Fu; Guo-Quan Wu; Jun-Jie Li; Yun-Peng Hou; Guang-Bin Zhou; Lun-Suo; Yan-Ping Wang; Shi-En Zhu

In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm(2) intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h.


Animal Biotechnology | 2007

Effect of Different Parthenogenetic Activation Methods on the Developmental Competence of in vitro Matured Porcine Oocytes

Wen-Min Cheng; Xu-Lei Sun; Lei An; Shi-En Zhu; Xi-He Li; Ying Li; Jianhui Tian

The aim of this study was to investigate the effect of electrical pulse, ethanol, and ionomycin combined with cycloheximide (CHX), cytochalasin B (CB), and 6-dimethylaminopurine (6-DMAP) on parthenogenetic developmental competence of in vitro matured porcine oocytes. In experiment 1, oocytes were treated with direct current electrical pulse (DC pulse) and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX, and CB + 6-DMAP for 6 h, respectively. The rate of blastocyst development in DC pulse + CB + 6-DMAP group was significantly higher than those in other groups (42.4% vs 23.9% ∼ 35.8%; P < 0.05); however, there were no differences in both of the cleavage rate and the cell number of blastocysts among four groups. In experiment 2, oocytes were treated with NCSU-23 medium containing 20 μM ionomycin for 40 min and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX and CB + 6-DMAP for 6 h, respectively. The rates of cleavage and blastocyst development in ionomycin + 6-DMAP group were higher than those obtained in other groups (66.2% vs 46.3% ∼ 57.3%; 22.3% vs 7.4% ∼ 16.1%; P < 0.05). In experiment 3, the activation effects of ethanol combined with 6-DMAP, CHX, CB + 6-DMAP and CB + CHX were investigated. The rates of cleavage and blastocyst development in ethanol + CB + 6-DMAP group were significantly higher than those in other groups (55.5% vs 42% ∼ 46.2%; 18.0% vs 7.1% ∼ 11.9%; P < 0.05). In experiment 4, the optimal activation protocols in each group plus DC pulse + ionomycin + 6-DMAP were compared. The results showed the rates of cleavage in DC pulse + CB + 6-DMAP group and ionomycin + 6-DMAP were higher than those in ethanol + CB + 6-DMAP and DC pulse + ionomycin + 6-DMAP (73.8–74.4% vs 56.5–57.5%; P < 0.05), but the blastocyst development only in DC pulse + CB + 6-DMAP group was significantly higher than that in other groups (34.1% vs 13.4% ∼ 22.3%; P < 0.05). Total cell number of blastocysts in the group of DC pulse + ionomycin + 6-DMAP was higher than that in other groups (34.1 vs 25.3–27.2; P < 0.05). In conclusion, DC pulse, ethanol, CB, and 6-DMAP all affected the parthenogenesis of porcine oocytes matured in vitro, but their combination of DC pulse + CB + 6-DMAP showed the best result in both of cleavage and blastocyst development.


Animal Biotechnology | 2007

Conventional Freezing, Straw, and Open-Pulled Straw Vitrification of Mouse Two Pronuclear (2-PN) Stage Embryos

Xue-Ming Zhao; Guo-Bo Quan; Guang-Bin Zhou; Yun-Peng Hou; Shi-En Zhu

Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.


Zygote | 2009

OPS vitrification of mouse immature oocytes before or after meiosis: the effect on cumulus cells maintenance and subsequent development.

Lun Suo; Guang-Bin Zhou; Qing-Gang Meng; Chang-Liang Yan; Zhi-Qiang Fan; Xue-Ming Zhao; Xiangwei Fu; Yan-Ping Wang; Qing-Jing Zhang; Shi-En Zhu

Cryopreservation can cause cumulus cell damage around the immature oocytes, which may result in poor subsequent development. To evaluate the effect of the meiosis stage on the cumulus cell cryoinjury and determine the suitable stage for cryopreservation in immature oocytes, mouse oocytes at germinal vesicle (GV) and germinal vesicle breakdown (GVBD) stages were vitrified using open pulled straw (OPS) method. Cumulus cells damage was scored immediately after thawing by double-fluorescent staining. The survival rate of the oocytes was evaluated and the subsequent development of oocytes was assessed through in vitro culture (IVC) and in vitro fertilization (IVF) separately. After vitrification, a higher proportion of cumulus cells of GV oocytes were damaged than those of GVBD and untreated control groups. The survival rate of vitrified GVBD oocytes (94.1%) was significantly higher (p < 0.05) than that of GV oocytes (85.4%). Oocytes vitrified at GVBD stage (55.7%) showed similar cleavage rate compared to those at GV stage (49.2%), but significantly higher (p < 0.05) blastocyst rate (40.9% vs. 27.4%). These results demonstrate that oocytes at GVBD stage remain better cumulus membrane integrity and developmental ability during vitrification than those at GV stage, indicating they are more suitable for immature oocytes cryopreservation in mice.


Biology of Reproduction | 2011

Quantitative Investigations on the Effects of Exposure Durations to the Combined Cryoprotective Agents on Mouse Oocyte Vitrification Procedures

Liang Wang; Jun Liu; Guang-Bin Zhou; Yun-Peng Hou; Jun-Jie Li; Shi-En Zhu

Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (Lp) and permeability (Ps) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10−3 M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.

Collaboration


Dive into the Shi-En Zhu's collaboration.

Top Co-Authors

Avatar

Guang-Bin Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiangwei Fu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yun-Peng Hou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan-Ping Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guoshi Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhong-Qiang Yang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Baoyu Jia

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianhui Tian

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun-Jie Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lun Suo

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge