Shi-Lin Tang
University of South China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shi-Lin Tang.
Clinica Chimica Acta | 2014
Xiao-Hua Yu; Zhi-Bin Tang; Li-Jing Liu; Hong Qian; Shi-Lin Tang; Da-Wei Zhang; Guo-Ping Tian; Chao-Ke Tang
Apelin is an adipokine that has been identified as an endogenous ligand for the orphan receptor APJ. Apelin and APJ are expressed in a diverse range of tissues with particular preponderance for the heart and vasculature. Apelin has powerful positive inotropic actions and causes endothelium- and nitric oxide-dependent vasodilatation. Growing evidence shows that apelin/APJ system functions as a critical mediator of cardiovascular homeostasis and is involved in the pathophysiology of cardiovascular diseases. Targeting apelin/APJ axis produces protection against cardiovascular diseases. In the current review we have summarized recent data concerning the role and therapeutic potential of apelin/APJ in several major cardiovascular diseases. An increased understanding of the cardiovascular actions of apelin/APJ system will help to develop novel therapeutic interventions for cardiovascular diseases.
PLOS ONE | 2013
Guo-Jun Zhao; Shi-Lin Tang; Yun-Cheng Lv; Xin-Ping Ouyang; Ping-Ping He; Feng Yao; Wu-Jun Chen; Qian Lu; Yan-Yan Tang; Min Zhang; Yuchang Fu; Da-Wei Zhang; Kai Yin; Chao-Ke Tang
ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. The purpose of this study was to investigate the effects of betulinic acid (BA), a pentacyclic triterpenoid, on ABCA1 expression and cholesterol efflux, and to further determine the underlying mechanism. BA promoted ABCA1 expression and cholesterol efflux, decreased cellular cholesterol and cholesterol ester content in LPS-treated macrophages. Furthermore, we found that BA promoted ABCA1 expression via down-regulation of miR-33s. The inhibition of LPS-induced NF-κB activation further decreased miR-33s expression and enhanced ABCA1 expression and cholesterol efflux when compared with BA only treatment. In addition, BA suppressed IκB phosphorylation, p65 phosphorylation and nuclear translocation, and the transcription of NF-κB-dependent related gene. Moreover, BA reduced atherosclerotic lesion size, miR-33s levels and NF-κB activation, and promoted ABCA1 expression in apoE−/− mice. Taken together, these results reveal a novel mechanism for the BA-mediated ABCA1 expression, which may provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Atherosclerosis | 2012
Shi-Lin Tang; Wu-Jun Chen; Kai Yin; Guo-Jun Zhao; Zhong-Cheng Mo; Yun-Cheng Lv; Xin-Ping Ouyang; Xiao-Hua Yu; Huai-Jun Kuang; Zhi-sheng Jiang; Yuchang Fu; Chao-Ke Tang
Pregnancy-associated plasma protein-A (PAPP-A) has been involved in the atherosclerotic process through regulation of local expression of IGF-1 that mediates the activation of the phosphatidylinositol-3 (PI3-K) and Akt kinase (Akt) signaling cascades which lead to constitutive nitric oxide formation, with its attending vasodilator, antiplatelet and insulin-sensitizing actions. In addition, IGF-1 may decreased cholesterol efflux through reductions of expression in ABCA1 and SR-B1 by the PI3-K/Akt signaling pathway. In the current study, we examined whether PAPP-A was involved in LXRα regulation and in expression of ABCA1, ABCG1 or SR-B1 through the IGF-I-mediated signaling pathway (IGF/PI3-K/Akt). Results showed that PAPP-A significantly decreased expression of ABCA1, ABCG1 and SR-BI at both transcriptional and translational levels in a dose-dependent and time-dependent manner. Cellular cholesterol content was increased while cholesterol efflux was decreased by PAPP-A treatment. Moreover, LXRα which can regulate the expression of ABCA1, ABCG1 and SR-B1, was also down-regulated by PAPP-A treatment. LXRα-specific activation by LXRα agonist almost rescued the down-regulation of ABCA1, ABCG1 and SR-B1 expression by PAPP-A. In addition, PAPP-A can induce the IGF-1/PI3-K/Akt pathway in macrophages. Furthermore, our results indicate that the decreased levels observed in LXRα, ABCA1, ABCG1 and SR-B1 mRNA and protein levels upon treating cells with PAPP-A were strongly impaired with the PI3-K inhibitors or IGF-1R siRNA while the MAPK cascade inhibitor did not execute this effect, indicating that the process of ABCA1, ABCG1 and SR-BI degradation by PAPP-A involves the IGF-1/PI3-K/Akt pathway. In conclusion, PAPP-A may first down-regulate expression of LXRα through the IGF-1/PI3-K/Akt signaling pathway and then decrease expression of ABCA1, ABCG1, SR-B1 and cholesterol efflux in THP-1 macrophage-derived foam cells. Therefore, our study provided one of the mechanisms for understanding the critical effect of PAPP-A in pathogenesis of atherosclerosis.
Atherosclerosis | 2013
Xiao-Yan Liu; Qian Lu; Xin-Ping Ouyang; Shi-Lin Tang; Guo-Jun Zhao; Yun-Cheng Lv; Ping-Ping He; Hai-Jun Kuang; Yan-Yan Tang; Yuchang Fu; Da-Wei Zhang; Chao-Ke Tang
Apelin has an antiatherogenic function through activating protein kinase C (PKC) to initiate a series of cellular signaling pathways. PKC phosphorylates and stabilizes ATP-binding cassette transporter A1 (ABCA1) through inhibiting its degradation mediated by calpain. Thus, in the present study, we investigated whether apelin-13 affects expression of ABCA1 through PKC signaling. The results showed that apelin-13 dramatically increased cholesterol efflux from THP-1 macrophage-derived foam cells and reduced cellular cholesterol levels. ABCA1 protein but not mRNA levels were dramatically increased by apelin-13, and calpain-induced degradation of ABCA1 and calpain activity were suppressed with treatment of apelin-13. However, the effects of apelin-13 on ABCA1 protein expression, cellular cholesterol efflux and calpain activity were abolished by depletion of PKCα, suggesting the potential important role of PKCα. In addition, apelin-13 was shown to phosphorylate serine residues in ABCA1 through the PKCα pathway. Thus, apelin-13 appears to activate PKCα, phosphorylate ABCA1 and inhibit calpain-mediated proteolysis, thereby promoting cholesterol efflux and reducing foam cell formation. Our study herein described a possible mechanism for understanding the antiatherogenic effects of apelin on attenuating the progression of atherosclerosis.
Biochimie | 2012
Guo-Ping Tian; Wu-Jun Chen; Ping-Ping He; Shi-Lin Tang; Guo-Jun Zhao; Yun-Cheng Lv; Xin-Ping Ouyang; Kai Yin; Ping-Ping Wang; Hong Cheng; Yuan Chen; Su-Lan Huang; Yuchang Fu; Da-Wei Zhang; Wei-Dong Yin; Chao-Ke Tang
LPL (lipoprotein lipase) is a rate-limiting enzyme involved in the hydrolysis of triglycerides. Previous studies have shown that microRNA (miR)-467b regulates hepatic LPL expression and plays a role in the progression of steatosis or abnormal lipid retention in obese mice. Macrophage-derived LPL has been shown to promote atherosclerosis. However, if miR-476b influences macrophage LPL expression and the subsequent effects are unknown. Here, we utilized oxLDL-treatment RAW 264.7 macrophages that were transfected with miR-467b mimics or inhibitors to investigate the potential roles of macrophage miR-476b. We found that miR-467b significantly decreased lipid accumulation and IL-6, IL-1β, TNF-α and MCP-1 secretions. Furthermore, our studies suggested an additional explanation for the regulatory mechanism of miR-467b on its functional target, LPL in RAW 264.7 macrophages. Thus, our findings indicate that miR-467b may regulate lipid accumulation and proinflammatory cytokine secretion in oxLDL-stimulated RAW 264.7 macrophages by targeting the LPL gene.
International Journal of Cardiology | 2014
Guo-Jun Zhao; Shi-Lin Tang; Yun-Cheng Lv; Xin-Ping Ouyang; Ping-Ping He; Feng Yao; Yan-Yan Tang; Min Zhang; Ya-Ling Tang; Deng-Pei Tang; Francisco S. Cayabyab; Guo-Ping Tian; Chao-Ke Tang
a Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China b Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China c Fourth year student in department of biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada d Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada e Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
Biochemical and Biophysical Research Communications | 2014
Guo-Ping Tian; Yan-Yan Tang; Ping-Ping He; Yun-Cheng Lv; Xin-Pin Ouyang; Guo-Jun Zhao; Shi-Lin Tang; Jian-Feng Wu; Jia-Lin Wang; Juan Peng; Min Zhang; Yuan Li; Francisco S. Cayabyab; Xi-Long Zheng; Da-Wei Zhang; Wei-Dong Yin; Chao-Ke Tang
Atherosclerosis is a lipid disorder disease characterized by chronic blood vessel wall inflammation driven by the subendothelial accumulation of macrophages. Studies have shown that lipoprotein lipase (LPL) participates in lipid metabolism, but it is not yet known whether post-transcriptional regulation of LPL gene expression by microRNAs (miRNAs) occurs in vivo. Here, we tested that miR-467b provides protection against atherosclerosis by regulating the target gene LPL which leads to reductions in LPL expression, lipid accumulation, progression of atherosclerosis and production of inflammatory cytokines in apolipoprotein E knockout (apoE(-/-)) mice. Treatment of apoE(-/-) mice with intra-peritoneal injection of miR-467b agomir led to decreased blood plasma levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1 (MCP-1). Using Western blots and real time PCR, we determined that LPL expression in aorta and abdominal cavity macrophages were significantly down-regulated in the miR-467b agomir group. Furthermore, systemic treatment with miR-467b antagomir accelerated the progression of atherosclerosis in the aorta of apoE(-/-) mice. The present study showed that miR-467b protects apoE(-/-) mice from atherosclerosis by reducing lipid accumulation and inflammatory cytokine secretion via downregulation of LPL expression. Therefore, targeting miR-467b may offer a promising strategy to treat atherosclerotic vascular disease.
Acta Pharmacologica Sinica | 2013
Kai Yin; Shi-Lin Tang; Xiao-Hua Yu; Guang-hui Tu; Rong-fang He; Jin-feng Li; Di Xie; Qing-jun Gui; Yuchang Fu; Zhi-sheng Jiang; Jian Tu; Chao-Ke Tang
Aim:To investigate the effects of the major component of high-density lipoprotein apolipoprotein A-I (apoA-I) on the development of atherosclerosis in LPS-challenged ApoE−/− mice and the underlying mechanisms.Methods:Male ApoE-KO mice were daily injected with LPS (25 μg, sc) or PBS for 4 weeks. The LPS-challenged mice were intravenously injected with rAAV-apoA-I-GFP or rAAV-GFP. After the animals were killed, blood, livers and aortas were collected for biochemical and histological analyses. For ex vivo experiments, the abdominal cavity macrophages were harvested from each treatment group of mice, and cultured with autologous serum, then treated with LPS.Results:Chronic administration of LPS in ApoE−/− mice significantly increased the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), increased infiltration of inflammatory cells, and enhanced the development of atherosclerosis. In LPS-challenged mice injected with rAAV-apoA-I-GFP, viral particles and human apoA-I were detected in the livers, total plasma human apoA-I levels were grammatically increased; HDL-cholesterol level was significantly increased, TG and TC were slightly increased. Furthermore, overexpression of apoA-I significantly suppressed the expression of proinflammatory cytokines, reduced the infiltration of inflammatory cells, and decreased the extent of atherosclerotic lesions. Moreover, overexpression of apoA-I significantly increased the expression of the cytokine mRNA-destabilizing protein tristetraprolin (TTP), and phosphorylation of JAK2 and STAT3 in aortas. In ex vivo mouse macrophages, the serum from mice overexpressing apoA-I significantly increased the expression of TTP, accompanied by accelerated decay of mRNAs of the inflammatory cytokines.Conclusion:ApoA-I potently suppresses LPS-induced atherosclerosis by inhibiting the inflammatory response possibly via activation of STAT3 and upregulation of TTP.
Biochemical and Biophysical Research Communications | 2014
Hui Fu; Yan-Yan Tang; Xin-Ping Ouyang; Shi-Lin Tang; Hua Su; Xiaotao Li; Li-ping Huang; Miao He; Yun-Cheng Lv; Ping-Ping He; Feng Yao; Yu-Lin Tan; Wei Xie; Min Zhang; Jian-Feng Wu; Yuan Li; Kong Chen; Dan Liu; Gang Lan; Meng-Ya Zeng; Xi-Long Zheng; Chao-Ke Tang
The purpose of this study is to determine whether IL-27 regulates macrophage ABCA1 expression, foam cell formation, and also explore the underlying mechanisms. Here, we revealed that IL-27 decreased lipid accumulation in THP-1 derived macrophages through markedly enhancing cholesterol efflux and increasing ABCA1 expression at both protein and mRNA levels. Our study further demonstrated that IL-27 increased ABCA1 level via activation of signal transducer and activator of transcription 3 (STAT3). Inhibition of Janus kinase 2, (JAK2)/STAT3 suppressed the stimulatory effects of IL-27 on ABCA1 expression. The present study concluded that IL-27 reduces lipid accumulation of foam cell by upregulating ABCA1 expression via JAK2/STAT3. Therefore, targeting IL-27 may offer a promising strategy to treat atherosclerotic vascular disease.
Biochemical and Biophysical Research Communications | 2014
Jian-Feng Wu; Yan Wang; Min Zhang; Yan-Yan Tang; Bo Wang; Ping-Ping He; Yun-Cheng Lv; Xin-Ping Ouyang; Feng Yao; Yu-Lin Tan; Shi-Lin Tang; Deng-Pei Tang; Francisco S. Cayabyab; Xi-Long Zheng; Da-Wei Zhang; Gao-Feng Zeng; Chao-Ke Tang
OBJECTIVE The aim of this study was to determine whether ATP-binding cassette transporter A1 (ABCA1) was up-regulated by growth differentiation factor-15 (GDF-15) via the phosphoinositide 3-kinase (PI3K)/protein kinase Cζ (PKCζ)/specificity protein 1 (SP1) pathway in THP-1 macrophages. METHODS AND RESULTS We investigated the effects of different concentrations of GDF-15 on ABCA1 expression in THP-1 macrophages. The results showed that GDF-15 dramatically increased cholesterol efflux and decreased cellular cholesterol levels. In addition, GDF15 increased ABCA1 mRNA and protein levels. The effects of GDF-15 on ABCA1 protein expression and cellular cholesterol efflux were abolished by wither inhibition or depletion of PI3K, PKCζ and SP1, respectively, suggesting the potential roles of PI3K, PKCζ and SP1 in ABCA1 expression. Taken together, GDF-15 appears to activate PI3K, PKCζ and SP1 cascade, and then increase ABCA1 expression, thereby promoting cholesterol efflux and reducing foam cell formation. CONCLUSION Our results suggest that GDF-15 has an overall protective effect on the progression of atherosclerosis, likely through inducing ABCA1 expression via the PI3K/PKCζ/SP1 signaling pathway and enhancing cholesterol efflux.