Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi-Min Cai is active.

Publication


Featured researches published by Shi-Min Cai.


Scientific Reports | 2016

Suppressing disease spreading by using information diffusion on multiplex networks

Wei Wang; Quan-Hui Liu; Shi-Min Cai; Ming Tang; Lidia A. Braunstein; H. Eugene Stanley

Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.


EPL | 2012

Scaling behavior of online human activity

Zhi-Dan Zhao; Shi-Min Cai; Junming Huang; Yan Fu; Tao Zhou

The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.


Chaos | 2015

Non-Markovian character in human mobility: Online and offline.

Zhi-Dan Zhao; Shi-Min Cai; Yang Lu

The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.


Frontiers of Computer Science in China | 2014

Recommendation algorithm based on item quality and user rating preferences

Yuan Guan; Shi-Min Cai; Ming-Sheng Shang

Recommender systems are one of the most important technologies in e-commerce to help users filter out the overload of information. However, current mainstream recommendation algorithms, such as the collaborative filtering CF family, have problems such as scalability and sparseness. These problems hinder further developments of recommender systems. We propose a new recommendation algorithm based on item quality and user rating preferences, which can significantly decrease the computing complexity. Besides, it is interpretable and works better when the data is sparse. Through extensive experiments on three benchmark data sets, we show that our algorithm achieves higher accuracy in rating prediction compared with the traditional approaches. Furthermore, the results also demonstrate that the problem of rating prediction depends strongly on item quality and user rating preferences, thus opens new paths for further study.


Physica A-statistical Mechanics and Its Applications | 2016

Bounded link prediction in very large networks

Wei Cui; Cunlai Pu; Zhongqi Xu; Shi-Min Cai; Jian Yang; Andrew Michaelson

Evaluating link prediction methods is a hard task in very large complex networks due to the prohibitive computational cost. However, if we consider the lower bound of node pairs’ similarity scores, this task can be greatly optimized. In this paper, we study CN index in the bounded link prediction framework, which is applicable to enormous heterogeneous networks. Specifically, we propose a fast algorithm based on the parallel computing scheme to obtain all node pairs with CN values larger than the lower bound. Furthermore, we propose a general measurement, called self-predictability, to quantify the performance of similarity indices in link prediction, which can also indicate the link predictability of networks with respect to given similarity indices.


Chaos | 2014

Community structure revealed by phase locking

Ming-Yang Zhou; Zhao Zhuo; Shi-Min Cai; Zhong-Qian Fu

Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization (phase locking) at a stable state, meanwhile, suppress the collective synchronization based on Kuramoto model. Through this scheme, the network dynamics only contains the local synchronization, which suggests that the nodes in the same community synchronize together and these synchronization clusters well reveal the community structure of network. Furthermore, by analyzing the paths to synchronization, the relations or overlaps among different communities are also obtained. Thus, the community detection based on the scheme is performed on five real networks and the observed community structures are much more apparent than modularity-based fast algorithm. Our results not only provide a deep insight to understand the synchronization dynamics on complex network but also enlarge the research scope of community detection.


Chaos | 2012

Synchronization-based approach for detecting functional activation of brain

Lei Hong; Shi-Min Cai; Jie Zhang; Zhao Zhuo; Zhong-Qian Fu; Pei-Ling Zhou

In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.


Physica A-statistical Mechanics and Its Applications | 2016

Dynamic patterns of academic forum activities

Zhi-Dan Zhao; Ya-Chun Gao; Shi-Min Cai; Tao Zhou

A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers’ activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps’ law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.


New Journal of Physics | 2018

Suppressing epidemic spreading in multiplex networks with social-support

Xiaolong Chen; Ruijie Wang; Ming Tang; Shi-Min Cai; H. Eugene Stanley; Lidia A. Braunstein

Although suppressing the spread of a disease is usually achieved by investing in public resources, in the real world only a small percentage of the population have access to government assistance when there is an outbreak, and most must rely on resources from family or friends. We study the dynamics of disease spreading in social-contact multiplex networks when the recovery of infected nodes depends on resources from healthy neighbors in the social layer. We investigate how degree heterogeneity affects the spreading dynamics. Using theoretical analysis and simulations we find that degree heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and increases smoothly from zero to a finite small value at the first invasion threshold and then suddenly jumps at the second invasion threshold. We also find a hysteresis loop in the transition of the infected density. We further investigate how an overlap in the edges between two layers affects the spreading dynamics. We find that when the amount of overlap is smaller than a critical value the phase transition is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis loop vanishes. In addition, the edge overlap allows an epidemic outbreak when the transmission rate is below the first invasion threshold, but suppresses any explosive transition when the transmission rate is above the first invasion threshold.


Physica A-statistical Mechanics and Its Applications | 2017

Coarse cluster enhancing collaborative recommendation for social network systems

Yao-Dong Zhao; Shi-Min Cai; Ming Tang; Ming-Sheng Shang

The tripartite graph is one of the commonest topological structures in social tagging systems such as Delicious, which has three types of nodes (i.e., users, URLs and tags). Traditional recommender systems developed based on collaborative filtering for the social tagging systems bring very high demands on CPU time cost. In this paper, to overcome this drawback, we propose a novel approach that extracts non-overlapping user clusters and corresponding overlapping item clusters simultaneously through coarse clustering to accelerate the user-based collaborative filtering and develop a fast recommendation algorithm for the social tagging systems. The experimental results show that the proposed approach is able to dramatically reduce the processing time cost greater than 90% and relatively enhance the accuracy in comparison with the ordinary user-based collaborative filtering algorithm.

Collaboration


Dive into the Shi-Min Cai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Tian

Beijing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Xuzhen Zhu

Beijing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Ming Tang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Tao Zhou

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhao Zhuo

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhong-Qian Fu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Sheng Shang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolong Chen

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge