Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi-Xiang Cheng is active.

Publication


Featured researches published by Shi-Xiang Cheng.


Molecular Neurobiology | 2013

Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3

Xiao-hong Li; Chong Chen; Yue Tu; Hong-Tao Sun; Ming-liang Zhao; Shi-Xiang Cheng; Yang Qu; Sai Zhang

Accumulating evidence shows that Sirt1 regulates a variety of neurological functions through the deacetylation of many proteins besides histone; however, the literature on the relationship between Sirt1 and axonal outgrowth is limited. Here, we first demonstrated that Sirt1 was located in the axon, especially in the growth cone. Then, we found that genetic inhibition of Sirt1 retarded axonal development in embryonic hippocampal neurons, whereas genetic and pharmacologic upregulation of Sirt1 promoted not only the formation but also the elongation of axons. Sirt1 can deacetylate and thus activate Akt, and inhibition of Akt significantly reversed the axonogenesis induced by Sirt1 overexpression. We also found that Sirt1 inhibited the activity of glycogen synthase kinase 3 (GSK3), whereas activation of GSK3 could abolish the effect of Sirt1. These results suggest that Sirt1 promotes axonogenesis by deacetylating Akt and thereby activates the Akt/GSK3 pathway, which could be a promising therapeutic target for axonopathy.


Journal of Neurotrauma | 2012

Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury.

Yue Tu; Chong Chen; Hong-Tao Sun; Shi-Xiang Cheng; Xiao-Zhi Liu; Yang Qu; Xiao-hong Li; Sai Zhang

Stem cell transplantation holds great potential for the treatment of traumatic brain injury (TBI). However, the micro-environment of reduced oxygen and accumulated toxins leads to low survival rates of grafted cells, which dramatically limits their clinical application. Mild hypothermia has been demonstrated to improve the micro-environment after severe TBI. Thus, we speculate that combinational therapy of mild hypothermia may promote survival of grafted cells, especially temperature-sensitive stem cells, which show the most activity in mild temperatures. In this study, we first isolated mesenchymal stem cells from umbilical cord (UCSMCs) and generated the temperature-sensitive UCSMCs (tsUCSMCs) by infection with a retrovirus carrying the temperature-sensitive tsA58 SV40 LT antigen gene. We demonstrated that tsUCSMCs grew and proliferated with more activity at 33°C than at 37°C by counting cell numbers with a hematocytometer, measuring the cell cycle with flow cytometry, and detecting proliferating cell nuclear antigen (PCNA) with immunofluorescence staining. Thereafter, we established the rat severe TBI model by fluid percussion, and injected PBS, UCSMCs, or tsUCSMCs into the injured region, and subject the animals to normothermia or mild hypothermia (33°C). We found that, compared with UCSMC or tsUCSMC treatment alone, their combination with hypothermia could significantly improve motor and cognitive function with more survival of the grafted cells. Furthermore, we observed that combined therapy with hypothermia and tsUCSMCs exerted the most protective effect on the recovery of neurological function of all the tested treatments, with the highest survival and proliferation rates, and the lowest apoptosis rate. Thus this may represent a new therapeutic strategy for the treatment of severe TBI.


PLOS ONE | 2013

FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression.

Hong-Tao Sun; Shi-Xiang Cheng; Yue Tu; Xiao-hong Li; Sai Zhang

Background Forkhead box Q1 (FoxQ1) is a member of the forkhead transcription factor family, and it has recently been found to participate in cancer development. However, whether FoxQ1 expression contributes to glioma development and progression is not known. We investigate FoxQ1 expression in gliomas and the role of FoxQ1 during tumorgenesis. Methods Reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot were used to determine the FoxQ1 and Neurexins 3 (NRXN3) expression in gliomas. Chromatin immunoprecipitation (ChIP) and luciferase assays were used to determine the regulation between FoxQ1 and NRXN3. We established depleted FoxQ1 stable clones in U-87MG cells and overexpressed FoxQ1 stable clones in SW1088 cells. MTT and transwell were used to evaluate the ability of proliferation and migration, respectively. Results FoxQ1 mRNA and protein were up-regulated in gliomas and negatively related to the NRXN3 expression (r = −0.373, P = 0.042). FoxQ1 directly binds to NRXN3 promoter region and suppresses the promoter activity. Furthermore, the ability of proliferation and migration is reduced in depleted FoxQ1 cells. Conclusion FoxQ1 promotes glioma cell proliferation and migration by down-regulation of NRXN3 expression.


Neuroscience Letters | 2012

Ferulic acid potentiates pentobarbital-induced sleep via the serotonergic system

Yue Tu; Shi-Xiang Cheng; Hong-Tao Sun; Tie-zhu Ma; Sai Zhang

Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a widely distributed natural phenolic compound that is abundant in many plant tissues and foods. This study investigated possible mechanisms underlying the sedative-hypnotic effect of FA through behavioral pharmacology methods. FA showed dose-dependent sedative effects on locomotion activity in normal mice. FA also significantly potentiated pentobarbital-induced (45 mg/kg, i.p.) sleep by prolonging sleeping time and shortening sleep latency in a dose-dependent manner. These effects were augmented by the administration of 5-hydroxytryptophan (5-HTP), a precursor of 5-hydroxytryptamine (5-HT). With a sub-hypnotic dose of pentobarbital (25 mg/kg, i.p.), FA significantly increased the rate of sleep onset and exhibited a synergistic effect with 5-HTP (2.5 mg/kg, i.p.). Pretreatment with p-chlorophenylalanine (PCPA, an inhibitor of tryptophan hydroxylase) significantly decreased the duration of pentobarbital-induced sleep, whereas FA significantly reversed this effect. These results suggest that FA has sedative-hypnotic activity, possibly mediated by the serotonergic system.


PLOS ONE | 2013

FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression.

Shi-Xiang Cheng; Yue Tu; Sai Zhang

Forkhead box M1 (FoxM1) is a member of the forkhead transcription factor family and is overexpression in malignant gliomas. However, the molecular mechanisms by which FoxM1lead to glioma carcinogenesis and progression are still not well known. In the present study, we show that Anxa1 was overexpression in gliomas and predicted the poor outcome. Furthermore, Anxa1 closely related to the FoxM1 expression and was a direct transcriptional target of FoxM1. Overexpression of FoxM1 up-regulated Anxa1 expression, whereas suppression of FoxM1 expression down-regulated Anxa1 expression in glioma cells. Finally, FoxM1 enhanced the proliferation, migration, and angiogenesis in Anxa1-dependent manner both in vitro and in vivo. Our findings provide both clinical and mechanistic evidences that FoxM1 contributes to glioma development by directly up-regulating Anxa1 expression.


Scientific Reports | 2017

Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury

Xiao-Sa Yang; Tai-Long Yi; Sai Zhang; Zhongwei Xu; Ze-Qi Yu; Hong-Tao Sun; Cheng Yang; Yue Tu; Shi-Xiang Cheng

Necroptosis, a novel type of programmed cell death, is involved in stroke-induced ischemic brain injury. Although studies have sought to explore the mechanisms of necroptosis, its signaling pathway has not yet to be completely elucidated. Thus, we used oxygen-glucose deprivation (OGD) and middle cerebral artery occlusion (MCAO) models mimicking ischemic stroke (IS) conditions to investigate mechanisms of necroptosis. We found that OGD and MCAO induced cell death, local brain ischemia and neurological deficit, while zVAD-fmk (zVAD, an apoptotic inhibitor), GSK’872 (a receptor interacting protein kinase-3 (RIP3) inhibitor), and combined treatment alleviated cell death and ischemic brain injury. Moreover, OGD and MCAO upregulated protein expression of the triggers of necroptosis: receptor interacting protein kinase-1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL). The upregulation of these proteins was inhibited by GSK’872, combination treatments and RIP3 siRNA but not zVAD treatment. Intriguingly, hypoxia-inducible factor-1 alpha (HIF-1α), an important transcriptional factor under hypoxic conditions, was upregulated by OGD and MCAO. Similar to their inhibitory effects on aforementioned proteins upregulation, GSK’872, combination treatments and RIP3 siRNA decreased HIF-1α protein level. These findings indicate that necroptosis contributes to ischemic brain injury induced by OGD and MCAO and implicate HIF-1α, RIP1, RIP3, and MLKL in necroptosis.


Brain Injury | 2017

Protective effect of mild-induced hypothermia against moderate traumatic brain injury in rats involved in necroptotic and apoptotic pathways.

Hai-Bo Zhang; Shi-Xiang Cheng; Yue Tu; Sai Zhang; Shi-Ke Hou; Zhen Yang

ABSTRACT Aim: To investigate the protective effect of hypothermia (HT) on brain injury in moderate traumatic brain injury (TBI) rat models and the potential mechanisms, especially the involvement of RIPK1 in apoptosis and necroptosis. Methods: Adult Sprague-Dawley rats were randomized to four groups: sham+normothermia (sham+NT), sham+hypothermia (sham+HT), moderate TBI+normothermia (TBI+NT) and moderate TBI+hypothermia (TBI+HT). The sham+HT and TBI+HT groups were submitted to 32°C for 6 hours. The regional cerebral blood flow (rCBF) was assessed 24 hours after TBI; 24 and 48 hours after TBI, the modified neurological severity score (mNSS) was assessed. Immediately after behavioural tests, rats were sacrificed to harvest the brain tissues. Results: mNSS scores were lower in the TBI+HT group compared with the TBI+NT group (p < 0.01) and cerebral blood flow was better (p < 0.01). H&E staining of the cortex and ipsilateral hippocampus showed pyknotic and irregularly shaped neurons in TBI+NT rats, which were less frequent in TBI+HT rats. The TBI+NT and TBI+HT groups showed higher TNF-α, TRAIL, FasL, FADD, caspase-3, caspase-8, PARP-1, RIPK-1 and RIPK-3 levels than the sham+NT group (all p < 0.05), but the levels of these proteins were all lower in the TBI+HT group compared with the TBI+NT group (all p < 0.01). Conclusion: HT treatment significantly reduced RIPK-1 upregulation, which may inhibit necroptosis and apoptosis pathways after moderate TBI.


Neural Regeneration Research | 2016

Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

Yue Tu; Xiaomei Miao; Tai-Long Yi; Xuyi Chen; Hong-Tao Sun; Shi-Xiang Cheng; Sai Zhang

Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury.


Journal of Neuroscience Methods | 2018

Establishment of a precise novel brain trauma model in a large animal based on injury of the cerebral motor cortex

Jipeng Jiang; Chen Dai; Xuegang Niu; Hong-Tao Sun; Shi-Xiang Cheng; Zhiwen Zhang; Xu Zhu; Yuting Wang; Tongshuo Zhang; Feng Duan; Xuyi Chen; Sai Zhang

BACKGROUND Animal models are essential in simulating clinical diseases and facilitating relevant studies. NEW METHOD We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups. The cerebral motor cortex was identified by diffusion tensor imaging (DTI), a simple marker method, and intraoperative electrophysiological measurement. Bony windows were designed by magnetic resonance imaging (MRI) scan and DTI. During the operation, canines in the control group were under general anesthesia. The canines were operated via bony window craniotomy and dura mater opening in the sham group. After opening of the bony window and dura mater, the motor cortex was impacted by a modified electronic cortical contusion impactor (eCCI) in the model group. RESULTS Postoperative measurements revealed damage to the cerebral motor cortex and functional defects. Comparisons between preoperative and postoperative results demonstrated that the established model was successful. COMPARISON WITH EXISTING METHOD(S) Compared with conventional models, this is the first brain trauma model in large animal that was constructed based on injury to the cerebral motor cortex under the guidance of DTI, a simple marker method, and electrophysiology. CONCLUSION The method used to establish this model can be standardized to enhance reproducibility and provide a stable and precise large animal model of TBI for clinical and basic research.


International Journal of Molecular Medicine | 2013

Vincristine induces cell cycle arrest and apoptosis in SH-SY5Y human neuroblastoma cells

Yue Tu; Shi-Xiang Cheng; Sai Zhang; Hong-Tao Sun; Zhongwei Xu

Collaboration


Dive into the Shi-Xiang Cheng's collaboration.

Top Co-Authors

Avatar

Sai Zhang

Tianjin University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Yue Tu

Tianjin University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiaomei Miao

Tianjin University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Zhu

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuting Wang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge