Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi-Xun Ma is active.

Publication


Featured researches published by Shi-Xun Ma.


Journal of Ethnopharmacology | 2012

Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells.

Seung-Hwan Kwon; Min-Jung Kim; Shi-Xun Ma; In-Jee You; Ji-Young Hwang; Ji-Hwan Oh; Sun-Yeou Kim; Hyoung-Chun Kim; Seok-Yong Lee; Choon-Gon Jang

ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv. Bark. (EUE), has commonly been used to fortify the muscles and lungs, lower blood pressure, prevent miscarriage, improve the tone of liver and kidneys, and promote longevity the traditional tonic medicines of Korea, China, and Japan. AIM OF THE STUDY In this study, we investigated that the neuroprotective activities and possible mechanisms of EUE aqueous extract in hydrogen peroxide (H(2)O(2))-induced neuronal cell death in human SH-SY5Y neuroblastoma cells. MATERIAL AND METHOD We examined the effects of EUE against H(2)O(2)-induced cytotoxicity, DNA condensation, the production of reactive oxygen species (ROS), loss of mitochondria membrane potential (MMP), the proteolysis of cleaved poly-ADP-ribose polymerase (PARP), and the expression of Bcl-2, Bcl-xL, cleaved caspase-3, and release of cytochrome c. Moreover, we attempted to determine whether EUE suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), and phosphoinositide 3-kinase (PI3K)/Akt. RESULTS Pretreatment with EUE increased cell viability and inhibited cytotoxicity and DNA condensation. EUE also attenuated the increase in ROS production and MMP reduction. Western blot data revealed that EUE inhibited H(2)O(2)-induced up- or down-regulation of cleaved PARP, cleaved caspase-3, Bcl-2, and Bcl-xL. The EUE inhibited release of cytochrome c from mitochondria to the cytosol, and significantly attenuated H(2)O(2)-induced phosphorylation of JNK, p38 MAPK, ERK 1/2, and PI3K/Akt. CONCLUSION The potent neuroprotective capacity of EUE, shown in these experiments, may potentially be applied in the prevention or treatment of neurodegenerative diseases such as Alzheimers disease (AD).


Biomolecules & Therapeutics | 2013

Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice

Seung-Hwan Kwon; Shi-Xun Ma; Hyun-Joong Joo; Seok-Yong Lee; Choon-Gon Jang

Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.


Neuroscience | 2015

Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25-35 neurotoxicity.

Seung-Hwan Kwon; Shi-Xun Ma; Ji-Young Hwang; Sun-Mee Lee; Choon-Gon Jang

Sulfuretin, one of the major flavonoid glycosides found in the stem bark of Albizzia julibrissin and heartwood of Rhus verniciflua, is a known anti-oxidant. We previously demonstrated that sulfuretin inhibits neuronal death via reactive oxygen species (ROS)-dependent mechanisms in human SH-SY5Y cells, although other relevant mechanisms of action of this compound remain largely uncharacterized. As part of our ongoing exploration of the pharmacological actions of sulfuretin, we studied the neuroprotective effects of sulfuretin against amyloid beta (Aβ)-induced neurotoxicity in human SH-SY5Y and primary hippocampal neuron cells and investigated the possible mechanisms involved. Specifically, we found in the present study that sulfuretin significantly attenuates the decrease in cell viability, release of lactate dehydrogenase, and accumulation of ROS associated with Aβ25-35-induced neurotoxicity in neuronal cells. Furthermore, sulfuretin stimulated the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a downstream target of phosphatidylinositol 3-kinases (PI3K)/Akt. We demonstrated that sulfuretin induces the expression of heme oxygenase-1 (HO-1), an anti-oxidant response gene. Notably, we found that the neuroprotective effects of sulfuretin were diminished by an Nrf2 small interfering RNA (siRNA), the HO-1 inhibitor zinc protoporphyrin IX (ZnPP), as well as the PI3K/Akt inhibitor LY294002. Taken together, these results indicated that sulfuretin protects neuronal cells from Aβ25-35-induced neurotoxicity through activation of Nrf/HO-1 and PI3K/Akt signaling pathways. Our results also indicate that sulfuretin-induced induction of Nrf2-dependent HO-1 expression via the PI3K/Akt signaling pathway has preventive and/or therapeutic potential for the management of Alzheimers disease.


Journal of Ethnopharmacology | 2014

Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells.

Seung-Hwan Kwon; Shi-Xun Ma; Sa-Ik Hong; Sun Yeou Kim; Seok-Yong Lee; Choon-Gon Jang

ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv. Bark. (EUE) has commonly been used to fortify the muscles and lungs, lower blood pressure, prevent miscarriage, improve liver and kidney tone, and promote longevity as a traditional tonic medicine in Korea, China, and Japan. AIM OF THE STUDY In this study, we investigated the mechanisms by which EUE protects neuronal cells from apoptosis induced by the Parkinsons disease (PD)-related neurotoxin, 6-hydroxydopamine (6-OHDA). MATERIALS AND METHODS We determined the neuroprotective effects of EUE on 6-OHDA-induced neuronal cell death, cytotoxicity, reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction. Moreover, we examined whether EUE suppressed phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β). Furthermore, the neuroprotective effects of EUE on 6-OHDA-induced activation of nuclear factor-kappa B (NF-κB) was studied in SH-SY5Y cells. RESULTS Pretreatment of SH-SY5Y cells with EUE significantly reduced 6-OHDA-induced cell death and cytotoxicity. EUE inhibited 6-OHDA-induced generation of ROS, which conferred cytoprotection against 6-OHDA-induced oxidative injury. EUE treatment also strikingly inhibited 6-OHDA-induced mitochondrial dysfunction. In addition, EUE suppressed phosphorylation of JNK, PI3K/Akt, and GSK-3β. Furthermore, EUE blocked 6-OHDA-induced NF-κB nuclear translocation, an event downstream from JNK, PI3K/Akt, and GSK-3β phosphorylation. Moreover, chlorogenic acid (CGA), one of the active constituents of EUE, was also able to reduce 6-OHDA-induced toxicity in SH-SY5Y cells. CONCLUSION Taken together, these results suggest that EUE attenuates oxidative stress through activation of JNK, PI3K/Akt, GSK-3β, and NF-κB pathways, thereby protecting cells from neuronal cell death.


Biomolecules & Therapeutics | 2014

Strain differences in the chronic mild stress animal model of depression and anxiety in mice.

Yang-Hee Jung; Sa-Ik Hong; Shi-Xun Ma; Ji-Young Hwang; Jun-Sup Kim; Ju-Hyun Lee; Jee-Yeon Seo; Seok-Yong Lee; Choon-Gon Jang

Chronic mild stress (CMS) has been reported to induce an anhedonic-like state in mice that resembles some of the symptoms of human depression. In the present study, we used a chronic mild stress animal model of depression and anxiety to examine the responses of two strains of mice that have different behavioral responsiveness. An outbred ICR and an inbred C57BL/6 strain of mice were selected because they are widely used strains in behavioral tests. The results showed that the inbred C57BL/6 and outbred ICR mice were similarly responsive to CMS treatment in sucrose intake test (SIT) and open field test (OFT). However, the two strains showed quite different responses in forced swimming test (FST) and novelty-suppressed feeding (NSF) test after 3 weeks of CMS treatment. Only C57BL/6 mice displayed the depression- and anxiety-like behavioral effects in response to CMS treatment in FST and NSF test. Our results suggest that there are differences in responsiveness to CMS according to the different types of strain of mice and behavioral tests. Therefore, these results provide useful information for the selection of appropriate behavioral methods to test depression- and anxiety-like behaviors using CMS in ICR and C57BL/6 mice.


Neurochemistry International | 2014

Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells

Seung-Hwan Kwon; Shi-Xun Ma; Seok-Yong Lee; Choon-Gon Jang

Sulfuretin, a potent anti-oxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress-related diseases. In this study, we investigated the mechanisms of sulfuretin protection of neuronal cells from cell death induced by the Parkinsons disease (PD)-related neurotoxin 6-hydroxydopamine (6-OHDA). We examined whether sulfuretin acts as an anti-oxidant to reduce oxidative stress and mitochondrial-mediated apoptotic cascade events in 6-OHDA-induced neurotoxicity in SH-SY5Y cells. We also investigated whether sulfuretin specifically acts by inhibiting phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β) as well as activation of the nuclear factor-kappa B (NF-κB) pathway. Sulfuretin significantly inhibited neuronal cell death, neurotoxicity, apoptosis, and reactive oxygen species (ROS) production. Sulfuretin also strikingly attenuated 6-OHDA-induced mitochondrial dysfunction. Moreover, sulfuretin significantly attenuated 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase 1/2 (ERK 1/2) MAPKs, PI3K/Akt, and GSK-3β. Eventually, sulfuretin inhibited 6-OHDA-induced NF-κB translocation to the nucleus induced by 6-OHDA. The results of the current study provide the first evidence that sulfuretin protects SH-SY5Y cells against 6-OHDA-induced neuronal cell death, possibly through inhibition of phosphorylation of MAPK, PI3K/Akt, and GSK-3β, which leads to mitochondrial protection, NF-κB modulations and subsequent suppression of apoptosis via ROS-dependent pathways. Thus, we conclude that sulfuretin may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for PD.


Neuropsychopharmacology | 2014

Transient receptor potential vanilloid type 1 channel may modulate opioid reward.

Thi-Lien Nguyen; Seung-Hwan Kwon; Sa-Ik Hong; Shi-Xun Ma; Yang-Hee Jung; Ji-Young Hwang; Hyoung-Chun Kim; Seok-Yong Lee; Choon-Gon Jang

Transient receptor potential vanilloid type 1 (TRPV1), a nonselective cation channel, is a well-known pain-related receptor. TRPV1 involvement in morphine-induced antinociception, tolerance, and withdrawal symptoms has been previously reported. Emerging evidence indicates that TRPV1 may be related to both the cellular and behavioral effects of addictive drugs. In the present study, we investigated the role of TRPV1 in morphine reward using the conditioned place preference (CPP) paradigm in mice. Repeated morphine treatments upregulated TRPV1 expression in the dorsal striatum (DSt). Treatment with a TRPV1 agonist potentiated morphine reward, and pretreatment with TRPV1 antagonists attenuated these effects. Microinjection of a selective TRPV1 antagonist into the DSt significantly inhibited morphine-CPP. In addition, treatment with a TRPV1 antagonist suppressed morphine-induced increases in μ-opioid receptor binding, adenylyl cyclase 1 (AC1), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor kappa B (NF-κB) expression in the DSt. Administering a p38 inhibitor not only prevented morphine-CPP, but also prevented morphine-induced NF-κB and TRPV1 activation in the DSt. Furthermore, injecting an NF-κB inhibitor significantly blocked morphine-CPP. Our findings suggest that TRPV1 in the DSt contribute to morphine reward via AC1, p38 MAPK, and NF-κB. Brain TRPV1 may serve as a novel therapeutic target to treat morphine-addictive disorders.


Addiction Biology | 2017

The new stimulant designer compound pentedrone exhibits rewarding properties and affects dopaminergic activity

Ji-Young Hwang; Jun-Sub Kim; Ji-Hwan Oh; Sa-Ik Hong; Shi-Xun Ma; Yang-Hee Jung; Yong-Hyun Ko; Seok-Yong Lee; Hyoung-Chun Kim; Choon-Gon Jang

Cathinone derivatives are new recreational drugs known to produce psychostimulant effects. However, unlike other psychostimulants, the addictive potential of cathinone derivatives has not been widely studied. Here, we investigated the effects of pentedrone, a type of cathinone derivative, on the dopaminergic system using reverse transcription polymerase chain reaction and Western blot. We also evaluated the addictive potential of pentedrone using conditioned place preference and self‐administration. We found that pentedrone increased the mRNA expression of dopamine 1 receptor, dopamine 2 receptor and dopamine transporter, as well as induced phosphorylation of cAMP response element‐binding protein in PC‐12 cells. Additionally, pentedrone at 3 and 10 mg/kg significantly increased conditioned place preference in mice, while pentedrone at 0.3 mg/kg/infusion significantly increased self‐administration in rats. Finally, we found that acute administration of pentedrone enhanced locomotor activity in a dose‐dependent manner. Collectively, these data suggest that the addictive properties of pentedrone may be due to its effects on the dopaminergic system.


Journal of Medicinal Food | 2015

Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells

Seung-Hwan Kwon; Shi-Xun Ma; Sa-Ik Hong; Seok-Yong Lee; Choon-Gon Jang

In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation.


Biomolecules & Therapeutics | 2016

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice.

Sa-Ik Hong; Seung-Hwan Kwon; Ji-Young Hwang; Shi-Xun Ma; Jee-Yeon Seo; Yong-Hyun Ko; Hyoung-Chun Kim; Seok-Yong Lee; Choon-Gon Jang

Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Collaboration


Dive into the Shi-Xun Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sa-Ik Hong

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyoung-Chun Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jee-Yeon Seo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Yong-Hyun Ko

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Hwan Oh

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge