Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi Zhong is active.

Publication


Featured researches published by Shi Zhong.


Journal of Ethnopharmacology | 2011

Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice.

Yougui Li; Dongfeng Ji; Shi Zhong; Zhi-Qiang Lv; Tianbao Lin; Shi Chen; Guiyan Hu

ETHNOPHARMACOLOGICAL RELEVANCE 1-Deoxynojirimycin (DNJ) discovered from mulberry trees has been reported to be a potent inhibitor of intestinal α-glycosidases (sucrase, maltase, glucoamylase), and many polysaccharides were useful in protecting against alloxan-induced pancreatic islets damage through their scavenging ability. This study was aimed to evaluate the therapeutic effect and potential mechanism(s) of the hybrid of DNJ and polysaccharide (HDP) from mulberry leaves on alloxan-induced diabetic mice. MATERIALS AND METHODS Daily oral treatment with HDP (150 mg/kg body weight) to diabetic mice for 12 weeks, body weight and blood glucose were determined every week, oral glucose tolerance test was performed after 4 and 8 weeks, biochemical values were measured using assay kits and gene expressions were investigated by RT-PCR. RESULTS A significant decline in blood glucose, glycosylated hemoglobin, triglyceride, aspartate transaminase and alanine transaminase levels and an evident increase in body weight, plasma insulin level and high density lipoprotein were observed in HDP treated diabetic mice. The polysaccharide (P1) showed a significant scavenging hydroxyl radicals and superoxide anion radical effects in vitro, which indicated that P1 could protect alloxan-induced pancreatic islets from damage by scavenging the free radicals and repaired the destroyed pancreatic β-cells. Pharmacokinetics assay showed that DNJ could be absorbed from the gastrointestinal mucosa and diffused rapidly into the liver, resulted in postprandial blood glucose decrease and alleviated the toxicity caused by sustained supra-physiological glucose to pancreatic β-cells. RT-PCR results indicated that HDP could modulate the hepatic glucose metabolism and gluconeogenesis by up/down-regulating the expression of rate-limiting enzymes (glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in liver and up-regulating the pancreatic and duodenal homeobox factor-1 (PDX-1), insulin-1 and insulin-2 expressions in pancreas. CONCLUSION These findings suggested that HDP has complimentary potency to develop an antihyperglycemic agent for treatment of diabetes mellitus.


Alcohol and Alcoholism | 2010

Saponins from Panax japonicus Protect Against Alcohol-Induced Hepatic Injury in Mice by Up-regulating the Expression of GPX3, SOD1 and SOD3

Yougui Li; Dongfeng Ji; Shi Zhong; Lian-Gen Shi; Guiyan Hu; Shi Chen

AIMS The purpose of this study was to investigate the possible mechanism(s) of saponins from Panax japonicus (SPJ) on alcohol-induced hepatic damage in mice. METHODS SPJ were identified by high performance liquid chromatography-evaporative light scattering detection-mass spectrometry (LC-ELSD-MS). Non-toxic concentrations of SPJ were assayed on alcohol-induced hepatic injury in male ICR mice and human hepatic cells. The protective effects were evaluated by biochemical values, histopathological observations and the relative gene expression. Results. In vitro, SPJ showed significant hydroxyl radical scavenging capacity. In vivo, SPJ (50 mg/kg) could rectify the pathological changes of aspartate transaminase, alanine transaminase, malondialdehyde, reduced glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) caused by alcohol metabolism to normal levels except for hepatic GSH and CAT. In hepatic cells, the results were in agreement with foregoing results determined in mice after pretreatment of SPJ (100 microg/ml). RT-PCR results showed that CAT, GPX and SOD mRNA decreased by alcohol metabolism were reversed, in which GPX3, SOD1 and SOD3 could return to a normal level, but CAT, GPX1 and SOD2 mRNA were still evidently lower than the control. Histopathological observations provided supportive evidence for biochemical analyses. CONCLUSIONS SPJ plays an important role in the protection of the structure and function of hepatic mitochondria and karyon by directly scavenging reactive oxygen species/free radicals and up-regulating the expression of antioxidant enzymes (SOD, GPX and CAT), especially to GPX3, SOD1 and SOD3.


International Journal of Biological Macromolecules | 2011

Anti-tumor effects of proteoglycan from Phellinus linteus by immunomodulating and inhibiting Reg IV/EGFR/Akt signaling pathway in colorectal carcinoma

Yougui Li; Dongfeng Ji; Shi Zhong; Jianxun Zhu; Shi Chen; Guiyan Hu

Proteoglycan (P1) purified from Phellinus linteus has been reported to have anti-disease activities. The objectives of our research were to determine the anti-tumor effect and possible mechanisms of P1 on human cancer cells. Cell inhibition assay showed that P1 has an antiproliferative effect on HepG2, HT-29, NCI-H 460 and MCF-7 human colon cancer cells, especially it was very effective in inhibiting HT-29 cells. When HT-29-bearing mice were treated with P1(100mg/kg), there was relative increase in spleen and thymus weights, the plasmatic pIgR and IgA levels were significantly increased, also there was a notable decrease in plasmatic PGE2, Reg IV, EGFR and Akt concentrations measured by ELISA. RT-PCR analysis suggested that P1-induced HT-29 apoptosis appeared to be associated with a decrease in the levels of expression of Reg IV and EGFR. These results suggest that P1 might have two potential roles in treating cancer; it acts as an immunopotentiator partly through protecting T cells from escaping PGE2 attack and enhancing the mucosal IgA response, and as a direct inhibitor by disrupting the Reg IV/EGFR/Akt signaling pathway.


Scientific Reports | 2013

1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice

Yougui Li; Dongfeng Ji; Shi Zhong; Tianbao Lin; Zhi-Qiang Lv; Guiyan Hu; Xin-Xin Wang

We investigated the role of 1-deoxynojirimycin (DNJ) on glucose absorption and metabolism in normal and diabetic mice. Oral and intravenous glucose tolerance tests and labeled 13C6-glucose uptake assays suggested that DNJ inhibited intestinal glucose absorption in intestine. We also showed that DNJ down-regulated intestinal SGLT1, Na+/K+-ATP and GLUT2 mRNA and protein expression. Pretreatment with DNJ (50 mg/kg) increased the activity, mRNA and protein levels of hepatic glycolysis enzymes (GK, PFK, PK, PDE1) and decreased the expression of gluconeogenesis enzymes (PEPCK, G-6-Pase). Assays of protein expression in hepatic cells and in vitro tests with purified enzymes indicated that the increased activity of glucose glycolysis enzymes was resulted from the relative increase in protein expression, rather than from direct enzyme activation. These results suggest that DNJ inhibits intestinal glucose absorption and accelerates hepatic glucose metabolism by directly regulating the expression of proteins involved in glucose transport systems, glycolysis and gluconeogenesis enzymes.


Chemico-Biological Interactions | 2015

Hypoglycemic effect of deoxynojirimycin-polysaccharide on high fat diet and streptozotocin-induced diabetic mice via regulation of hepatic glucose metabolism.

Yougui Li; Dongfeng Ji; Shi Zhong; Tianbao Lin; Zhi-Qiang Lv

Type 2 diabetes mellitus (T2DM) is currently considered a worldwide epidemic and finding effective therapeutic strategies against this disease is highly important. A deoxynojirimycin-polysaccharide mixture (DPM) has previously been shown to exert hypoglycemic effects on alloxan- or streptozotocin (STZ)-induced diabetic mice. The purpose of the present study was to evaluate the therapeutic effects and underlying mechanism(s) of DPM on T2DM induced by high fat diet following low-dose STZ treatment in mice. After daily oral treatment of diabetic mice with DPM (150 mg/kg b.w.) for 90 d, significant decline in blood glucose, pyruvate, triglyceride (TG), aspartate transaminase (AST), alanine transaminase (ALT), creatinine (Cr), lipid peroxide (LPO) and malondialdehyde (MDA) levels as well as evident increases in high density lipoprotein (HDL-c) and hepatic glycogen concentrations were observed. In the first stage, in which DPM was administered for 60 d, blood insulin levels did not undergo significant change but a significant decrease in the HOMA-IR index was detected. By contrast, the HOMA-IR index increased significantly in T2MD controls. In the second stage, in which DPM treatment was continued for another 30 d, insulin levels significantly increased in DPM-treated mice in comparison with T2DM controls. These results indicate that insulin resistance in the pre-diabetic period and the dysfunction of pancreatic β-cells are ameliorated by DPM treatment. DPM also down-regulated protein levels of insulin receptor (IR) and gluconeogenic enzymes (pyruvate carboxylase, fructose-1, 6-bisphosphatase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in peripheral tissues (liver and/or muscle), but enhanced the expressions of insulin in pancreas, lipoprotein lipase (LPL) and glycolysis enzymes (glucokinase, phosphofructokinase, private kinase and pyruvate decarboxylase E1) in the liver. Furthermore, deoxynojirimycin (DNJ) and polysaccharide (P) were found to increase proliferation of hepatic LO-2 cells and scavenging of radicals in vitro. These results support the results of our biochemical analyses and underscore possible mechanisms underlying the protective effects of DPM on STZ-induced damage to the pancreas and the liver. Taken together, our findings suggest that DPM may be developed as an antihyperglycemic agent for the treatment of diabetes mellitus.


Chemico-Biological Interactions | 2013

Activation of P27kip1-cyclin D1/E-CDK2 pathway by polysaccharide from Phellinus linteus leads to S-phase arrest in HT-29 cells

Shi Zhong; Dongfeng Ji; Yougui Li; Tianbao Lin; Zhi-Qiang Lv; Hua-Ping Chen

Our previous study showed that polysaccharide (P1) from Phellinus linteus exhibits a significant inhibitive activity on human colorectal carcinoma cells (HT-29). However its novel molecular mechanism remains unknown. To obtain insights into P1s mechanism of action, we examined its effects on cell proliferation in vitro and in vivo, cell cycle distribution, apoptosis, autophagy, and expression of several cell cycle interrelated proteins in HT-29 cells. Interestingly, we found that volume and weight of the solid tumor significantly decreased in P1 (200mg/kg)-treated mice compared with the control. However, slightly increased the body weight of the P1 treated tumor-bearing mice, with no significant increased ALT, AST levels in serum and LPO concentration in liver and kidney indicated that P1 has no toxicity to mammals at a dose of 200mg/kg. Furthermore, P1 caused a significantly dose-dependent increase in the S-phase cell cycle, but no apoptosis and autophagy in HT-29 cells. RT-PCR and Western blot results showed significantly down-regulated expressions of cyclin D1, cyclin E, and CDK2, as well as increased expressions of P27kip1 in P1 (100 μg/mL)-treated HT-29 cells. These results suggested that the activation of P27kip1-cyclin D1/E-CDK2 pathway is involved in P1-induced S-phase cell cycle arrest in HT-29 cells.


PLOS ONE | 2013

Cooperative Anti-Diabetic Effects of Deoxynojirimycin-Polysaccharide by Inhibiting Glucose Absorption and Modulating Glucose Metabolism in Streptozotocin-Induced Diabetic Mice

Yougui Li; Dongfeng Ji; Shi Zhong; Zhi-Qiang Lv; Tianbao Lin

We had previously shown that deoxynojirimycin-polysaccharide mixture (DPM) not only decreased blood glucose but also reversed the damage to pancreatic β-cells in diabetic mice, and that the anti-hyperglycemic efficacy of this combination was better than that of 1-deoxynojirimycin (DNJ) or polysachharide alone. However, the mechanisms behind these effects were not fully understood. The present study aimed to evaluate the therapeutic effects of DPM on streptozotocin (STZ)-induced diabetic symptoms and their potential mechanisms. Diabetic mice were treated with DPM (150 mg/kg body weight) for 90 days and continued to be fed without DPM for an additional 30 days. Strikingly, decrease of blood glucose levels was observed in all DPM treated diabetic mice, which persisted 30 days after cessation of DPM administration. Significant decrease of glycosylated hemoglobin and hepatic pyruvate concentrations, along with marked increase of serum insulin and hepatic glycogen levels were detected in DPM treated diabetic mice. Results of a labeled 13C6-glucose uptake assay indicated that DPM can restrain glucose absorption. Additionally, DPM down-regulated the mRNA and protein expression of jejunal Na+/glucose cotransporter, Na+/K+-ATPase and glucose transporter 2, and enhanced the activities as well as mRNA and protein levels of hepatic glycolysis enzymes (glucokinase, phosphofructokinase, private kinase and pyruvate decarboxylas E1). Activity and expression of hepatic gluconeogenesis enzymes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) were also found to be attenuated in diabetic mice treated with DPM. Purified enzyme activity assays verified that the increased activities of glucose glycolysis enzymes resulted not from their direct activation, but from the relative increase in protein expression. Importantly, our histopathological observations support the results of our biochemical analyses and validate the protective effects of DPM on STZ-induced damage to the pancreas. Thus, DPM has significant potential as a therapeutic agent against diabetes.


Journal of Ethnopharmacology | 2013

Polysaccharide from Phellinus linteus induces S-phase arrest in HepG2 cells by decreasing calreticulin expression and activating the P27kip1–cyclin A/D1/E–CDK2 pathway

Yougui Li; Dongfeng Ji; Shi Zhong; Peigang Liu; Zhi-Qiang Lv; Jianxun Zhu; Jine Chen; Hua-Ping Chen

ETHNOPHARMACOLOGY RELEVANCE Our previous study showed that the proteoglycan P1 from Phellinus linteus (Mesima) exhibits significant anti-tumor activity against human hepatocellular carcinoma cells (HepG2); however, its molecular mechanism remains unknown. This study aims to provide insights into the mechanism of the anti-tumor activity of P1 against HepG2 cells. METHODS We examined the effects of P1 on HepG2 cell proliferation in vitro and in vivo. Flow cytometry was used to analyze the cell cycle distribution and apoptosis. Proteomic analysis, real-time (RT)-PCR, and Western blot were carried out to observe the expression of several cell cycle control proteins in HepG2 cells. RESULTS Both the volume and the weight of solid tumors were significantly decreased in P1-treated mice (200mg/kg) compared with the control. The HepG2 cells in the P1-treated tumors were significantly decreased, irregularly shaped, and smaller. P1 slightly increased the body weight of the tumor-bearing mice, which indicates that P1 is nontoxic to mammals at 200mg/kg. P1 also caused a significant dose-dependent increase in S phase arrest, but no apoptosis was observed in HepG2 cells. The results of the proteomic analysis, RT-PCR, and Western blot analysis showed that significantly downregulated expression of calreticulin, cyclin D1, cyclin E, and CDK2 and upregulated expression of P27 kip1 and cyclin A in the P1-treated HepG2 cells (200 μg/ml). CONCLUSION These results suggest that calreticulin expression and the P27 kip1-cyclin A/D1/E-CDK2 pathway were involved in P1-induced S-phase cell cycle arrest in HepG2 cells.


Molecules | 2016

Protocatechualdehyde Induces S-Phase Arrest and Apoptosis by Stimulating the p27(KIP1)-Cyclin A/D1-CDK2 and Mitochondrial Apoptotic Pathways in HT-29 Cells.

Shi Zhong; Yougui Li; Dongfeng Ji; Tianbao Lin; Zhi-Qiang Lv

Protocatechualdehyde (PCA) extracted from Phellinus gilvus exhibits anti-cancer activity in human colorectal carcinoma cells (HT-29). However, the underlying mechanisms remain poorly understood. We performed an in vitro study involving MTT, flow cytometry, RT-PCR, and western blot analyses to investigate the effects of PCA treatment on cell proliferation, cell cycle distribution, apoptosis, and expression of several cell cycle-related genes in HT-29 cells. The treatment enhanced S-phase cell cycle and apoptosis in HT-29 cells in a dose-dependent manner. Western blot results showed that PCA treatment decreased the expression levels of cyclin A, cyclin D1, and p27KIP1 but increased those of cyclin-dependent kinase 2 (CDK2) in HT-29 cells. Furthermore, the expression levels of B-cell lymphoma/leukemia-2 (Bcl-2) and B-cell lymphoma/leukemia-xL (Bcl-xL) were down-regulated, whereas the levels of BH3-interacting domain death agonist (Bid), Bcl-2 homologous antagonist/killer (Bak), and cytosolic cytochrome c were significantly upregulated. Thus, the enzymes caspases-9, -3, -8, and -6 were found to be activated in HT-29 cells with PCA treatment. These results indicate that PCA-induced S-phase cell cycle arrest and apoptosis involve p27KIP1-mediated activation of the cyclin-A/D1-Cdk2 signaling pathway and the mitochondrial apoptotic pathway.


PLOS ONE | 2018

The aqueous extract of Phellinus igniarius (SH) ameliorates dextran sodium sulfate-induced colitis in C57BL/6 mice

Yuqing Sun; Shi Zhong; Jiaqi Yu; Jianxun Zhu; Dongfeng Ji; Guiyan Hu; Chongming Wu; Yougui Li

Phellinus igniarius, which is called Sanghuang in Chinese, is a fungal herb widely used in Traditional Chinese Medicine to treat stomachache, inflammation and tumors. Recent studies have demonstrated the antitumor, anti-diabetic, anti-inflammatory and immunity-modulating activities of P. igniarius. In the present study, we investigated that ameliorating effect of the aqueous extract of P. igniarius fruiting body (SH) on dextran sodium sulfate (DSS)-induced colitis in C57BL/6 mice. Treatment with SH (250 and 400 mg/kg) for 8 weeks effectively alleviated the pathological indicators of colitis such as bodyweight reduction, disease activity index score, shortening of colon length and abnormal colon histology. The plasma levels of lipopolysaccharide (LPS) and inflammatory factors such as interleukin-6 (IL-6), IL-1β and tumor necrosis factor (TNF)-α were all significantly reduced. Supplementation of SH (10 mg/L) also inhibited LPS-elicited IL-1β production by RAW264.7 macrophages. Real-time PCR and western blot showed that treatment with SH significantly inhibited the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and decreased the expression of IL-6/IL-1β-maturation genes such as apoptosis-associated speck-like protein (ASC3) and caspase-1 in the colon of DSS-induced colitis mice. These results suggest that SH is adequate for the treatment of colitis. Inhibiting the expression and release of inflammatory factors may participate in the colitis-ameliorating effect of SH.

Collaboration


Dive into the Shi Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guiyan Hu

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge