Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shibani Mukherjee is active.

Publication


Featured researches published by Shibani Mukherjee.


Cell | 2014

The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

Bao N. Puente; Wataru Kimura; Shalini Muralidhar; Jesung Moon; James F. Amatruda; Katherine J Phelps; David Grinsfelder; Beverly A. Rothermel; Rui Chen; Joseph A. Garcia; Celio X.C. Santos; Suwannee Thet; Eiichiro Mori; Michael Kinter; Paul M. Rindler; Serena Zacchigna; Shibani Mukherjee; David J. Chen; Ahmed I. Mahmoud; Mauro Giacca; Peter S. Rabinovitch; Asaithamby Aroumougame; Ajay M. Shah; Luke I. Szweda; Hesham A. Sadek

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Biological Psychiatry | 2010

Knockdown of Clock in the Ventral Tegmental Area Through RNA Interference Results in a Mixed State of Mania and Depression-Like Behavior

Shibani Mukherjee; Laurent Coque; Jun Li Cao; Jaswinder Kumar; Sumana Chakravarty; Aroumougame Asaithamby; Ami Graham; Elizabeth Gordon; John F. Enwright; Ralph J. DiLeone; Shari G. Birnbaum; Donald C. Cooper; Colleen A. McClung

BACKGROUND Circadian rhythm abnormalities are strongly associated with bipolar disorder; however the role of circadian genes in mood regulation is unclear. Previously, we reported that mice with a mutation in the Clock gene (ClockDelta19) display a behavioral profile that is strikingly similar to bipolar patients in the manic state. METHODS Here, we used RNA interference and viral-mediated gene transfer to knock down Clock expression specifically in the ventral tegmental area (VTA) of mice. We then performed a variety of behavioral, molecular, and physiological measures. RESULTS We found that knockdown of Clock, specifically in the VTA, results in hyperactivity and a reduction in anxiety-related behavior, which is similar to the phenotype of the ClockDelta19 mice. However, VTA-specific knockdown also results in a substantial increase in depression-like behavior, creating an overall mixed manic state. Surprisingly, VTA knockdown of Clock also altered circadian period and amplitude, suggesting a role for Clock in the VTA in the regulation of circadian rhythms. Furthermore, VTA dopaminergic neurons expressing the Clock short hairpin RNA have increased activity compared with control neurons, and this knockdown alters the expression of multiple ion channels and dopamine-related genes in the VTA that could be responsible for the physiological and behavioral changes in these mice. CONCLUSIONS Taken together, these results suggest an important role for Clock in the VTA in the regulation of dopaminergic activity, manic and depressive-like behavior, and circadian rhythms.


Cancer Biology & Therapy | 2006

Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer.

Shibani Mukherjee; Natalya Frolova; Andrea Sadlonova; Zdenek Novak; Adam D. Steg; Grier P. Page; Danny R. Welch; Susan M. Lobo-Ruppert; J. Michael Ruppert; Martin R. Johnson; Andra R. Frost

The hedgehog pathway regulates epithelial-mesenchymal interactions, differentiation, proliferation and survival during development. Stimulation of hedgehog signaling induces carcinogenesis or promotes cell survival in cancers of multiple organs. Using real-time, quantitative PCR, laser capture microdissection, and immunohistochemistry, distinctive patterns of expression of the hedgehog pathway members patched 1 (PTCH1), smoothened, GLI1, GLI2 and the 3 hedgehog ligands were identified for epithelial cells and stromal fibroblasts in benign breast and breast cancer. Hedgehog ligands were expressed at higher levels in some cancer epithelial cell lines compared to non-cancerous epithelial cells. Correspondingly, expression of GLI1, a transcription factor and transcriptional product of hedgehog signaling, was increased 8-fold in cancer epithelial cell lines; however, PTCH1, also a transcriptional target of hedgehog signaling in many cell types, was not increased. GLI1 protein and mRNA, and PTCH1 and sonic hedgehog (SHH) proteins were elevated in 3 of 10 breast cancers; however, PTCH1 transcripts were not consistently increased. Hedgehog-mediated transcription, as indicated by a reporter of GLI-dependent promoter activity and by expression of GLI1 transcripts, was reduced by the hedgehog pathway inhibitor cyclopamine in both MDA-MB-435 cancer epithelial cells and MCF10AT epithelial cells, a cell line derived from benign breast. However, cyclopamine reduced viability of cancer epithelial cell lines, including MDA-MB-435, but did not specifically affect fibroblasts or epithelial cells from benign breast, including MCF10AT. Treatment with sonic hedgehog ligand diminished the cyclopamine-induced reduction in GLI-dependent promoter activity in MCF10AT and MDA-MB-435 and viability of MDA-MB-435. These results demonstrate modulation of GLI-mediated transcription in both cancer and benign-derived epithelial cells by cyclopamine and sonic hedgehog, and further suggest that hedgehog signaling contributes to the survival of only the cancer epithelial cells. Determination as to whether the increase in GLI1 and SHH expression in breast cancer indicates a significant increase in hedgehog signaling will require further evaluation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Separation of telomerase functions by reverse genetics

Shibani Mukherjee; Eduardo Firpo; Yang Wang; James M. Roberts

The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents.


Neuropsychopharmacology | 2011

Specific Role of VTA Dopamine Neuronal Firing Rates and Morphology in the Reversal of Anxiety-Related, but not Depression-Related Behavior in the ClockΔ19 Mouse Model of Mania

Laurent Coque; Shibani Mukherjee; Jun Li Cao; Sade Spencer; Marian Marvin; Edgardo Falcon; Michelle M. Sidor; Shari G. Birnbaum; Ami Graham; Rachael L. Neve; Elizabeth Gordon; Angela R. Ozburn; Matthew S. Goldberg; Ming-Hu Han; Donald C. Cooper; Colleen A. McClung

Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.


Biological Psychiatry | 2009

Role of Nuclear Factor κB in Ovarian Hormone-Mediated Stress Hypersensitivity in Female Mice

Quincey LaPlant; Sumana Chakravarty; Vincent Vialou; Shibani Mukherjee; Ja Wook Koo; Geetha Kalahasti; Kathryn R. Bradbury; Shameeke V. Taylor; Ian Maze; Arvind Kumar; Ami Graham; Shari G. Birnbaum; Vaishnav Krishnan; Hoang Trang Truong; Rachael L. Neve; Eric J. Nestler; Scott J. Russo

BACKGROUND The molecular mechanisms of stress-induced depressive behaviors have been characterized extensively in male rodents; however, much less is known about female subjects, despite the fact that human depression is far more prevalent in women. METHODS To gain insight into these mechanisms, we performed microarray analysis in nucleus accumbens (NAc), a key brain reward region implicated in depression, in ovariectomized (OVX) and gonadally intact female mice after chronic unpredictable stress and measured stress-induced depression-like behavior in the forced swim test (FST). Male mice were studied in the FST for comparison. RESULTS We find that stress regulation of genes in NAc of gonadally intact female mice is blunted in OVX mice. This pattern of gene regulation is consistent with behavioral findings on the FST: the pro-depression-like effect of stress in intact female mice is absent in OVX female and gonadally intact male mice. We identified, among many genes regulated by stress, several nuclear factor kappaB (NFkappaB) subunits-a pro-survival transcription factor involved in cellular responses to stress-as being highly upregulated in NAc of OVX mice. Given the role of NFkappaB during stress, we hypothesized that upregulation of NFkappaB by OVX decreases susceptibility to stress. Indeed, we show that inhibition of NFkappaB in NAc of OVX animals increases susceptibility to stress-induced depressive behaviors, whereas activation of NFkappaB in NAc of intact female subjects blocks susceptibility. CONCLUSIONS These results suggest a hormonal mechanism of NFkappaB regulation that contributes to stress-induced depressive behaviors in female subjects and might represent a mechanism for gender differences in prevalence rates of these disorders in humans.


Journal of the American College of Cardiology | 2015

Human Ventricular Unloading Induces Cardiomyocyte Proliferation

Diana C. Canseco; Wataru Kimura; Sonia Garg; Shibani Mukherjee; Souparno Bhattacharya; Salim Abdisalaam; Sandeep R. Das; Aroumougame Asaithamby; Pradeep P.A. Mammen; Hesham A. Sadek

BACKGROUND The adult mammalian heart is incapable of meaningful regeneration after substantial cardiomyocyte loss, primarily due to the inability of adult cardiomyocytes to divide. Our group recently showed that mitochondria-mediated oxidative DNA damage is an important regulator of postnatal cardiomyocyte cell cycle arrest. However, it is not known whether mechanical load also plays a role in this process. We reasoned that the postnatal physiological increase in mechanical load contributes to the increase in mitochondrial content, with subsequent activation of DNA damage response (DDR) and permanent cell cycle arrest of cardiomyocytes. OBJECTIVES The purpose of this study was to test the effect of mechanical unloading on mitochondrial mass, DDR, and cardiomyocyte proliferation. METHODS We examined the effect of human ventricular unloading after implantation of left ventricular assist devices (LVADs) on mitochondrial content, DDR, and cardiomyocyte proliferation in 10 matched left ventricular samples collected at the time of LVAD implantation (pre-LVAD) and at the time of explantation (post-LVAD). RESULTS We found that post-LVAD hearts showed up to a 60% decrease in mitochondrial content and up to a 45% decrease in cardiomyocyte size compared with pre-LVAD hearts. Moreover, we quantified cardiomyocyte nuclear foci of phosphorylated ataxia telangiectasia mutated protein, an upstream regulator of the DDR pathway, and we found a significant decrease in the number of nuclear phosphorylated ataxia telangiectasia mutated foci in the post-LVAD hearts. Finally, we examined cardiomyocyte mitosis and cytokinesis and found a statistically significant increase in both phosphorylated histone H3-positive, and Aurora B-positive cardiomyocytes in the post-LVAD hearts. Importantly, these results were driven by statistical significance in hearts exposed to longer durations of mechanical unloading. CONCLUSIONS Prolonged mechanical unloading induces adult human cardiomyocyte proliferation, possibly through prevention of mitochondria-mediated activation of DDR.


Cancer Microenvironment | 2009

Identification of Molecular Distinctions Between Normal Breast-Associated Fibroblasts and Breast Cancer-Associated Fibroblasts

Andrea Sadlonova; Damon B. Bowe; Zdenek Novak; Shibani Mukherjee; Virginia E. Duncan; Grier P. Page; Andra R. Frost

Stromal fibroblasts influence the behavior of breast epithelial cells. Fibroblasts derived from normal breast (NAF) inhibit epithelial growth, whereas fibroblasts from breast carcinomas (CAF) have less growth inhibitory capacity and can promote epithelial growth. We sought to identify molecules that are differentially expressed in NAF versus CAF and potentially responsible for their different growth regulatory abilities. To determine the contribution of soluble molecules to fibroblast–epithelial interactions, NAF were grown in 3D, transwell or direct contact co-cultures with MCF10AT epithelial cells. NAF suppressed proliferation of MCF10AT in both direct contact and transwell co-cultures, but this suppression was significantly greater in direct co-cultures, indicating involvement of both soluble and contact factors. Gene expression profiling of early passage fibroblast cultures identified 420 genes that were differentially expressed in NAF versus CAF. Of the eight genes selected for validation by real-time PCR, FIBULIN 1, was overexpressed in NAF, and DICKKOPF 1, NEUREGULIN 1, PLASMINOGEN ACTIVATOR INHIBITOR 2, and TISSUE PLASMINOGEN ACTIVATOR were overexpressed in CAF. A higher expression of FIBULIN 1 in normal- than cancer-associated fibroblastic stroma was confirmed by immunohistochemistry of breast tissues. Among breast cancers, stromal expression of Fibulin 1 protein was higher in estrogen receptor α-positive cancers and low stromal expression of Fibulin 1 correlated with a higher proliferation of cancer epithelial cells. In conclusion, expression profiling of NAF and CAF cultures identified many genes with potential relevance to fibroblast–epithelial interactions in breast cancer. Furthermore, these early passage fibroblast cultures can be representative of gene expression in stromal fibroblasts in vivo.


European Journal of Neuroscience | 2013

Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety‐related behavior

Sade Spencer; Edgardo Falcon; Jaswinder Kumar; Vaishnav Krishnan; Shibani Mukherjee; Shari G. Birnbaum; Colleen A. McClung

It has been suggested for some time that circadian rhythm abnormalities underlie the development of multiple psychiatric disorders. However, it is unclear how disruptions in individual circadian genes might regulate mood and anxiety. Here we found that mice lacking functional mPeriod 1 (mPer1) or mPeriod 2 (mPer2) individually did not have consistent behavioral abnormalities in measures of anxiety‐related behavior. However, mice deficient in both mPer1 and mPer2 had an increase in levels of anxiety‐like behavior in multiple measures. Moreover, we found that mPer1 and mPer2 expression was reduced in the nucleus accumbens (NAc) after exposure to chronic social defeat stress, a paradigm that led to increased anxiety‐related behavior. Following social defeat, chronic treatment with fluoxetine normalized Per gene expression towards wild‐type levels. Knockdown of both mPer1 and mPer2 expression via RNA interference specifically in the NAc led to a similar increase in anxiety‐like behavior as seen in the mutant animals. Taken together, these results implicate the Per genes in the NAc in response to stress and the development of anxiety.


Neuropsychopharmacology | 2013

The Role of Clock in Ethanol-Related Behaviors

Angela R. Ozburn; Edgardo Falcon; Shibani Mukherjee; Andrea G. Gillman; Rachel Arey; Sade Spencer; Colleen A. McClung

Mice with a mutation in the Clock gene (ClockΔ19) exhibit increased preference for stimulant rewards and sucrose. They also have an increase in dopaminergic activity in the ventral tegmental area (VTA) and a general increase in glutamatergic tone that might underlie these behaviors. However, it is unclear if their phenotype would extend to a very different class of drug (ethanol), and if so, whether these systems might be involved in their response. Continuous access voluntary ethanol intake was evaluated in ClockΔ19 mutants and wild-type (WT) mice. We found that ClockΔ19 mice exhibited significantly increased ethanol intake in a two-bottle choice paradigm. Interestingly, this effect was more robust in female mice. Moreover, chronic ethanol experience resulted in a long-lasting decrease in VTA Clock expression. To determine the importance of VTA Clock expression in ethanol intake, we knocked down Clock expression in the VTA of WT mice via RNA interference. We found that reducing Clock expression in the VTA resulted in significantly increased ethanol intake similar to the ClockΔ19 mice. Interestingly, we also discovered that ClockΔ19 mice exhibit significantly augmented responses to the sedative effects of ethanol and ketamine, but not pentobarbital. However, their drinking behavior was not affected by acamprosate, an FDA-approved drug for the treatment of alcoholism, suggesting that their increased glutamatergic tone might underlie the increased sensitivity to the sedative/hypnotic properties of ethanol but not the rewarding properties of ethanol. Taken together, we have identified a significant role for Clock in the VTA as a negative regulator of ethanol intake and implicate the VTA dopamine system in this response.

Collaboration


Dive into the Shibani Mukherjee's collaboration.

Top Co-Authors

Avatar

Aroumougame Asaithamby

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. K. Thakur

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

A. Asaithambi

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Edgardo Falcon

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Salim Abdisalaam

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Souparno Bhattacharya

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shari G. Birnbaum

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ami Graham

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge