Shigemi Ohta
KEK
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shigemi Ohta.
Physical Review D | 2008
Chris Allton; D.J. Antonio; Yasumichi Aoki; T. Blum; Peter A. Boyle; Norman H. Christ; Michael Clark; Saul D. Cohen; C. Dawson; M. A. Donnellan; Jonathan M. Flynn; A. Hart; Taku Izubuchi; C. K. Jung; Andreas Juttner; Anthony D. Kennedy; R.D. Kenway; M. Li; S. Li; M. F. Lin; Robert D. Mawhinney; C.M. Maynard; Shigemi Ohta; Brian Pendleton; C.T. Sachrajda; Shoichi Sasaki; E. E. Scholz; Amarjit Soni; R.J. Tweedie; J. Wennekers
We have simulated QCD using 2+1 flavors of domain wall quarks on a (2.74fm)3 volume with an inverse lattice scale of a?1=1.729(28) GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617 and 0.884. We have measured pseudoscalar meson masses and decay constants, the kaon bag parameter BK and vector meson couplings. We have used SU(2) chiral perturbation theory, which assumes only the up and down quark masses are small, and SU(3) chiral perturbation theory to extrapolate to the physical values for the light quark masses. While next-to-leading order formulae from both approaches fit our data for light quarks, we find the higher order corrections for SU(3) very large, making such fits unreliable. We also find that SU(3) does not fit our data when the quark masses are near the physical strange quark mass. Thus, we rely on SU(2) chiral perturbation theory for accurate results. We use the masses of the ? baryon, and the ? and K mesons to set the lattice scale and determine the quark masses. We then find f?=124.1(3.6)stat(6.9)systMeV, fK=149.6(3.6)stat(6.3)systMeV and fK/f?=1.205(0.018)stat(0.062)syst. Using non-perturbative renormalization to relate lattice regularized quark masses to RI-MOM masses, and perturbation theory to relate these to MS¯ we find mMS¯ud(2GeV)=3.72(0.16)stat(0.33)ren(0.18)systMeV and mMS¯s(2GeV)=107.3(4.4)stat(9.7)ren(4.9)systMeV.
Physical Review D | 2011
Yasumichi Aoki; R. Arthur; Thomas Blum; Peter A. Boyle; Dirk Brömmel; Norman H. Christ; C. Dawson; Jonathan M. Flynn; Taku Izubuchi; X-Y. Jin; Chulwoo Jung; C. Kelly; M. Li; A. Lichtl; M. Lightman; Meifeng Lin; Robert D. Mawhinney; C.M. Maynard; Shigemi Ohta; Brian Pendleton; Christopher T. Sachrajda; E. E. Scholz; Amarjit Soni; J. Wennekers; James Zanotti; R. Zhou
We present physical results obtained from simulations usin g 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spac ing a, (a−1= 1.73 (3) GeV and a−1= 2.28 (3) GeV). On the coarser lattice, with 24 3×64×16 points (where the 16 corresponds to Ls, the extent of the 5 th dimension inherent in the domain wall fermion (DWF) formula tion
Physical Review D | 2016
Thomas Blum; Peter A. Boyle; Norman H. Christ; Julien Frison; Nicolas Garron; Renwick Hudspith; Taku Izubuchi; T. Janowski; Chulwoo Jung; Andreas Jüttner; C. Kelly; R.D. Kenway; Christoph Lehner; Marina Marinkovic; Robert D. Mawhinney; Greg McGlynn; David Murphy; Shigemi Ohta; Antonin Portelli; Christopher T. Sachrajda; Amarjit Soni
We present results for several light hadronic quantities ( f π , f K , B K , m ud , m s , t 0 ½, w 0 ) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3) %, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum “global fit” with a number of other ensembles with heavier pion masses. We use the physical values of m π , m K and m Ω to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including f π = 130.2(9) MeV; f K = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the ‾MS scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, B K , in the renormalization group invariant scheme, 0.750(15) and the ‾MS scheme at 3 GeV, 0.530(11).
Physical Review D | 2001
T. Blum; Amarjit Soni; Y. Zhestkov; Robert D. Mawhinney; Shigemi Ohta; Norman H. Christ; G. Siegert; Pavlos M. Vranas; George T. Fleming; C. Cristian; C. Dawson; L. Wu; Matthew Wingate; P. Chen
We report the results of a calculation of the K --> pi pi matrix elements relevant for the
Physical Review D | 2007
Chris Allton; D. J. Antonio; T. Blum; K.C. Bowler; Peter A. Boyle; Norman H. Christ; Saul D. Cohen; Michael Clark; C. Dawson; A. Hart; K. Hashimoto; Taku Izubuchi; Andreas Jüttner; C. K. Jung; A. D. Kennedy; R.D. Kenway; M. Li; S. Li; Meifeng Lin; Robert D. Mawhinney; C.M. Maynard; J. Noaki; Shigemi Ohta; Brian Pendleton; S. Sasaki; E. E. Scholz; Amarjit Soni; R.J. Tweedie; A. Yamaguchi; T. Yamazaki
\DIhalf
Physical Review Letters | 2008
Toshimitou Yamazaki; Yasumichi Aoki; T. Blum; Huey-Wen Lin; Meifeng Lin; Shigemi Ohta; Shoichi Sasaki; R.J. Tweedie; James Zanotti
rule and
Ibm Journal of Research and Development | 2005
Peter A. Boyle; Dong Chen; Norman H. Christ; Michael Clark; Saul D. Cohen; C. Cristian; Zhihua Dong; Alan Gara; Balint Joo; Chulwoo Jung; Changhoan Kim; L. Levkova; X. Liao; G. Liu; Robert D. Mawhinney; Shigemi Ohta; Konstantin Petrov; Tilo Wettig; A. Yamaguchi
\epe
Physical Review D | 2005
Y. Aoki; T. Blum; Norman H. Christ; C. Dawson; Koichi Hashimoto; Taku Izubuchi; Jack Laiho; L. Levkova; Meifeng Lin; Robert D. Mawhinney; J. Noaki; Shigemi Ohta; Kostas Orginos; Amarjit Soni
in quenched lattice QCD using domain wall fermions at a fixed lattice spacing
Physical Review Letters | 2008
D.J. Antonio; Peter A. Boyle; T. Blum; Norman H. Christ; Saul D. Cohen; C. Dawson; Taku Izubuchi; R.D. Kenway; C. K. Jung; S. Li; Meifeng Lin; Robert D. Mawhinney; J. Noaki; Shigemi Ohta; Brian Pendleton; E. E. Scholz; Amarjit Soni; R.J. Tweedie; A. Yamaguchi
a^{-1} \sim 2
Physical Review D | 2004
Yasumichi Aoki; T. Blum; Norman H. Christ; C. Cristian; C. Dawson; Taku Izubuchi; G. Liu; Robert D. Mawhinney; Shigemi Ohta; Kostas Orginos; Amarjit Soni; L. Wu
GeV. Working in the three-quark effective theory, where only the u, d and s quarks enter and which is known perturbatively to next-to-leading order, we calculate the lattice K --> pi and K --> |0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K --> pi pi matrix elements, which we then normalize to continuum values through a non-perturbative renormalization technique. For the ratio of isospin amplitudes |A_0|/|A_2| we find a value of