Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigenobu Yonemura is active.

Publication


Featured researches published by Shigenobu Yonemura.


Nature Cell Biology | 2010

|[alpha]|-Catenin as a tension transducer that induces adherens junction development

Shigenobu Yonemura; Yuko Wada; Toshiyuki Watanabe; Akira Nagafuchi; Mai Shibata

Adherens junctions (AJs), which are organized by adhesion proteins and the underlying actin cytoskeleton, probably sense pulling forces from adjacent cells and modulate opposing forces to maintain tissue integrity, but the regulatory mechanism remains unknown at the molecular level. Although the possibility that α-catenin acts as a direct linker between the membrane and the actin cytoskeleton for AJ formation and function has been minimized, here we show that α-catenin recruits vinculin, another main actin-binding protein of AJs, through force-dependent changes in α-catenin conformation. We identified regions in the α-catenin molecule that are required for its force-dependent binding of vinculin by introducing mutant α-catenin into cells and using in vitro binding assays. Fluorescence recovery after photobleaching analysis for α-catenin mobility and the existence of an antibody recognizing α-catenin in a force-dependent manner further supported the notion that α-catenin is a tension transducer that translates mechanical stimuli into a chemical response, resulting in AJ development.


Cell Stem Cell | 2012

Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs

Tokushige Nakano; Satoshi Ando; Nozomu Takata; Masako Kawada; Keiko Muguruma; Kiyotoshi Sekiguchi; Koichi Saito; Shigenobu Yonemura; Mototsugu Eiraku; Yoshiki Sasai

In this report, we demonstrate that an optic cup structure can form by self-organization in human ESC culture. The human ESC-derived optic cup is much larger than the mouse ESC-derived one, presumably reflecting the species differences. The neural retina in human ESC culture is thick and spontaneously curves in an apically convex manner, which is not seen in mouse ESC culture. In addition, human ESC-derived neural retina grows into multilayered tissue containing both rods and cones, whereas cone differentiation is rare in mouse ESC culture. The accumulation of photoreceptors in human ESC culture can be greatly accelerated by Notch inhibition. In addition, we show that an optimized vitrification method enables en bloc cryopreservation of stratified neural retina of human origin. This storage method at an intermediate step during the time-consuming differentiation process provides a versatile solution for quality control in large-scale preparation of clinical-grade retinal tissues.


Development | 2011

Hippo pathway regulation by cell morphology and stress fibers

Ken Ichi Wada; Kazuyoshi Itoga; Teruo Okano; Shigenobu Yonemura; Hiroshi Sasaki

The Hippo signaling pathway plays an important role in regulation of cell proliferation. Cell density regulates the Hippo pathway in cultured cells; however, the mechanism by which cells detect density remains unclear. In this study, we demonstrated that changes in cell morphology are a key factor. Morphological manipulation of single cells without cell-cell contact resulted in flat spread or round compact cells with nuclear or cytoplasmic Yap, respectively. Stress fibers increased in response to expanded cell areas, and F-actin regulated Yap downstream of cell morphology. Cell morphology- and F-actin-regulated phosphorylation of Yap, and the effects of F-actin were suppressed by modulation of Lats. Our results suggest that cell morphology is an important factor in the regulation of the Hippo pathway, which is mediated by stress fibers consisting of F-actin acting upstream of, or on Lats, and that cells can detect density through their resulting morphology. This cell morphology (stress-fiber)-mediated mechanism probably cooperates with a cell-cell contact (adhesion)-mediated mechanism involving the Hippo pathway to achieve density-dependent control of cell proliferation.


Nature | 2011

Self-formation of functional adenohypophysis in three-dimensional culture

Hidetaka Suga; Taisuke Kadoshima; Maki Minaguchi; Masatoshi Ohgushi; Mika Soen; Tokushige Nakano; Nozomu Takata; Takafumi Wataya; Keiko Muguruma; Hiroyuki Miyoshi; Shigenobu Yonemura; Yutaka Oiso; Yoshiki Sasai

The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke’s pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke’s-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.


The EMBO Journal | 2011

Modulating F-actin organization induces organ growth by affecting the Hippo pathway.

Leticia Sansores-Garcia; Wouter Bossuyt; Ken Ichi Wada; Shigenobu Yonemura; Chunyao Tao; Hiroshi Sasaki; Georg Halder

The Hippo tumour suppressor pathway is a conserved signalling pathway that controls organ size. The core of the Hpo pathway is a kinase cascade, which in Drosophila involves the Hpo and Warts kinases that negatively regulate the activity of the transcriptional coactivator Yorkie. Although several additional components of the Hippo pathway have been discovered, the inputs that regulate Hippo signalling are not fully understood. Here, we report that induction of extra F‐actin formation, by loss of Capping proteins A or B, or caused by overexpression of an activated version of the formin Diaphanous, induced strong overgrowth in Drosophila imaginal discs through modulating the activity of the Hippo pathway. Importantly, loss of Capping proteins and Diaphanous overexpression did not significantly affect cell polarity and other signalling pathways, including Hedgehog and Decapentaplegic signalling. The interaction between F‐actin and Hpo signalling is evolutionarily conserved, as the activity of the mammalian Yorkie‐orthologue Yap is modulated by changes in F‐actin. Thus, regulators of F‐actin, and in particular Capping proteins, are essential for proper growth control by affecting Hippo signalling.


Current Opinion in Cell Biology | 2011

Cadherin-actin interactions at adherens junctions.

Shigenobu Yonemura

The adherens junction (AJ) is a major cell-cell junction that mediates cell recognition, adhesion, morphogenesis, and tissue integrity. Although AJs transmit forces generated by actomyosin from one cell to another, AJs have long been considered as an area where signal transduction from cadherin ligation takes place through cell adhesion. Through the efforts to understand embryonic or cellular morphogenesis, dynamic interactions between the AJ and actin filaments have become crucial issues to be addressed since actin association is essential for AJ development, remodeling and function. Here, I provide an overview of cadherin-actin interaction from morphological aspects and of possible molecular mechanisms revealed by recent studies.


Journal of Biological Chemistry | 2010

The TRPV4 Channel Contributes to Intercellular Junction Formation in Keratinocytes

Takaaki Sokabe; Tomoko Fukumi-Tominaga; Shigenobu Yonemura; Atsuko Mizuno; Makoto Tominaga

Transient receptor potential vanilloid 4 (TRPV4) channel is a physiological sensor for hypo-osmolarity, mechanical deformation, and warm temperature. The channel activation leads to various cellular effects involving Ca2+ dynamics. We found that TRPV4 interacts with β-catenin, a crucial component linking adherens junctions and the actin cytoskeleton, thereby enhancing cell-cell junction development and formation of the tight barrier between skin keratinocytes. TRPV4-deficient mice displayed impairment of the intercellular junction-dependent barrier function in the skin. In TRPV4-deficient keratinocytes, extracellular Ca2+-induced actin rearrangement and stratification were delayed following significant reduction in cytosolic Ca2+ increase and small GTPase Rho activation. TRPV4 protein located where the cell-cell junctions are formed, and the channel deficiency caused abnormal cell-cell junction structures, resulting in higher intercellular permeability in vitro. Our results suggest a novel role for TRPV4 in the development and maturation of cell-cell junctions in epithelia of the skin.


Journal of Cell Biology | 2012

Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells

Akihito Inoko; Makoto Matsuyama; Hidemasa Goto; Yuko Hayashi; Masato Enomoto; Miho Ibi; Takeshi Urano; Shigenobu Yonemura; Tohru Kiyono; Ichiro Izawa; Masaki Inagaki

The trichoplein–AurA pathway must suppress primary cilia assembly in order for cells to exit G1.


Development | 2010

Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions

Mai Yamamoto; Ryoko Morita; Takamasa Mizoguchi; Hiromi Matsuo; Miho Isoda; Tohru Ishitani; Ajay B. Chitnis; Kunihiro Matsumoto; J. Gage Crump; Katsuto Hozumi; Shigenobu Yonemura; Koichi Kawakami; Motoyuki Itoh

In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord. We found that Mind bomb (Mib) ubiquitylates Jagged 1 (Jag1) and is essential in the signal-emitting cells for Jag1 to activate Notch signalling. In zebrafish, loss- and gain-of-function analyses showed that Mib-Jag1-Notch signalling favours the development of non-vacuolated cells at the expense of vacuolated cells in the notochord. This leads to changes in the peri-notochordal basement membrane formation and patterning surrounding the muscle pioneer cells. These data reveal a previously unrecognized mechanism regulating the patterning and structural roles of the notochord by Mib-Jag1-Notch signalling-mediated cell-fate determination.


Journal of Cell Science | 2011

Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia

Miki Tanaka-Okamoto; Keiko Hori; Hiroyoshi Ishizaki; Yu Itoh; Sachiko Onishi; Shigenobu Yonemura; Yoshimi Takai; Jun Miyoshi

Afadin interacts with the cytoplasmic region of nectins, which are immunoglobulin-like cell adhesion molecules at adherens junctions, and links them to the actin cytoskeleton. Afadin regulates activities of cells in culture such as directional motility, proliferation and survival. We used Cre-loxP technology to generate mice conditionally lacking afadin specifically in the intestinal epithelia after birth. The loss of afadin caused increased paracellular permeability in the intestinal mucosa and enhanced susceptibility to the tissue destruction induced by dextran sulfate sodium. The junctional architecture of the intestinal epithelia appeared to be preserved, whereas the deficiency of afadin caused the mislocalization of nectin-2 and nectin-3 from adherens junctions to basolateral membrane domains but not that of other components of apical junctions. By contrast, such phenotypic changes were undetected in mice lacking nectin-2, nectin-3 or both. These findings suggest that afadin plays crucial roles, independently of the role as the nectin–afadin module, in barrier function and homeostasis of the intestinal epithelia once the epithelial structure has been established.

Collaboration


Dive into the Shigenobu Yonemura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ohno

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Ichi Wada

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge