Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigenori Iwai is active.

Publication


Featured researches published by Shigenori Iwai.


Molecular and Cellular Biology | 2005

Centrin 2 Stimulates Nucleotide Excision Repair by Interacting with Xeroderma Pigmentosum Group C Protein

Ryotaro Nishi; Yuki Okuda; Eriko Watanabe; Toshio Mori; Shigenori Iwai; Chikahide Masutani; Kaoru Sugasawa; Fumio Hanaoka

ABSTRACT Xeroderma pigmentosum group C (XPC) protein plays a key role in DNA damage recognition in global genome nucleotide excision repair (NER). The protein forms in vivo a heterotrimeric complex involving one of the two human homologs of Saccharomyces cerevisiae Rad23p and centrin 2, a centrosomal protein. Because centrin 2 is dispensable for the cell-free NER reaction, its role in NER has been unclear. Binding experiments with a series of truncated XPC proteins allowed the centrin 2 binding domain to be mapped to a presumed α-helical region near the C terminus, and three amino acid substitutions in this domain abrogated interaction with centrin 2. Human cell lines stably expressing the mutant XPC protein exhibited a significant reduction in global genome NER activity. Furthermore, centrin 2 enhanced the cell-free NER dual incision and damaged DNA binding activities of XPC, which likely require physical interaction between XPC and centrin 2. These results reveal a novel vital function for centrin 2 in NER, the potentiation of damage recognition by XPC.


Molecular Cell | 2009

Two-Step Recognition of DNA Damage for Mammalian Nucleotide Excision Repair: Directional Binding of the XPC Complex and DNA Strand Scanning

Kaoru Sugasawa; Jun-ichi Akagi; Ryotaro Nishi; Shigenori Iwai; Fumio Hanaoka

For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5-to-3 directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.


Nature Communications | 2013

Human endonuclease V is a ribonuclease specific for inosine-containing RNA

Yoko Morita; Toshihiro Shibutani; Nozomi Nakanishi; Kazuko Nishikura; Shigenori Iwai; Isao Kuraoka

Deamination of DNA bases can create missense mutations predisposing humans to cancer and also interfere with other basic molecular genetic processes; this deamination generates deoxyinosine from deoxyadenosine. In Escherichia coli, the highly conserved endonuclease V is involved in alternative excision repair that removes deoxyinosine from DNA. However, its exact activities and roles in humans are unknown. Here we characterize the FLJ35220 protein, the human homologue of E. coli endonuclease V, hEndoV as a ribonuclease specific for inosine-containing RNA. hEndoV preferentially binds to RNA and efficiently hydrolyses the second phosphodiester bond located 3′ to the inosine in unpaired inosine-containing ssRNA regions in dsRNA. It localizes to the cytoplasm in cells. The ribonuclease activity is promoted by Tudor staphylococcal nuclease and detected on inosine-containing dsRNA created by the action of adenosine deaminases acting on RNA. These results demonstrate that hEndoV controls the fate of inosine-containing RNA in humans.


Molecular and Cellular Biology | 2007

In Vivo Destabilization and Functional Defects of the Xeroderma Pigmentosum C Protein Caused by a Pathogenic Missense Mutation

Gentaro Yasuda; Ryotaro Nishi; Eriko Watanabe; Toshio Mori; Shigenori Iwai; Donata Orioli; Miria Stefanini; Fumio Hanaoka; Kaoru Sugasawa

ABSTRACT Xeroderma pigmentosum group C (XPC) protein plays an essential role in DNA damage recognition in mammalian global genome nucleotide excision repair (NER). Here, we analyze the functional basis of NER inactivation caused by a single amino acid substitution (Trp to Ser at position 690) in XPC, previously identified in the XPC patient XP13PV. The Trp690Ser change dramatically affects the in vivo stability of the XPC protein, thereby causing a significant reduction of its steady-state level in XP13PV fibroblasts. Despite normal heterotrimeric complex formation and physical interactions with other NER factors, the mutant XPC protein lacks binding affinity for both undamaged and damaged DNA. Thus, this single amino acid substitution is sufficient to compromise XPC function through both quantitative and qualitative alterations of the protein. Although the mutant XPC fails to recognize damaged DNA, it is still capable of accumulating in a UV-damaged DNA-binding protein (UV-DDB)-dependent manner to UV-damaged subnuclear domains. However, the NER factors transcription factor IIH and XPA failed to colocalize stably with the mutant XPC. As well as highlighting the importance of UV-DDB in recruiting XPC to UV-damaged sites, these findings demonstrate the role of DNA binding by XPC in the assembly of subsequent NER intermediate complexes.


Nucleic Acids Research | 2015

Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein

Syota Matsumoto; Eric S. Fischer; Takeshi Yasuda; Naoshi Dohmae; Shigenori Iwai; Toshio Mori; Ryotaro Nishi; Ken-ichi Yoshino; Wataru Sakai; Fumio Hanaoka; Nicolas H. Thomä; Kaoru Sugasawa

In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.


Scientific Reports | 2015

Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication

Toshihiro Shibutani; Shinsuke Ito; Mariko Toda; Rie Kanao; Leonard B. Collins; Marika Shibata; Miho Urabe; Haruhiko Koseki; Yuji Masuda; James A. Swenberg; Chikahide Masutani; Fumio Hanaoka; Shigenori Iwai; Isao Kuraoka

The genetic information encoded in genomes must be faithfully replicated and transmitted to daughter cells. The recent discovery of consecutive DNA conversions by TET family proteins of 5-methylcytosine into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) suggests these modified cytosines act as DNA lesions, which could threaten genome integrity. Here, we have shown that although 5caC pairs with guanine during DNA replication in vitro, G·5caC pairs stimulated DNA polymerase exonuclease activity and were recognized by the mismatch repair (MMR) proteins. Knockdown of thymine DNA glycosylase increased 5caC in genome, affected cell proliferation via MMR, indicating MMR is a novel reader for 5caC. These results suggest the epigenetic modification products of 5caC behave as DNA lesions.


Nucleic Acids Research | 2006

Preferential formation of (5S,6R)-thymine glycol for oligodeoxyribonucleotide synthesis and analysis of drug binding to thymine glycol-containing DNA.

Tatsuhiko Shimizu; Koichiro Manabe; Shinya Yoshikawa; Yusuke Kawasaki; Shigenori Iwai

We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol. To obtain the building block of the other isomer, (5S,6R)-thymidine glycol, in an amount sufficient for oligonucleotide synthesis, the Sharpless asymmetric dihydroxylation (AD) reaction was examined. Although the reaction was very slow, (5S,6R)-thymidine glycol was obtained in preference to the (5R,6S) isomer. The ratio of (5S,6R)- and (5R,6S)-thymidine glycols was 2:1, and a trans isomer was also formed. When an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, was used as a co-solvent, the reaction became faster, and the yield was improved without changing the preference. The phosphoramidite building block of (5S,6R)-thymidine glycol was prepared, and oligonucleotides containing 5S-thymine glycol were synthesized. One of the oligonucleotides was used to analyze the binding of distamycin A to thymine glycol-containing DNA by Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements. Distamycin A bound to a duplex containing either isomer of thymine glycol within the AATT target site, and its binding was observed even when the thymine glycol was placed opposite cytosine.


Nucleic Acids Research | 2010

Fluorescent probes for the analysis of DNA strand scission in base excision repair

Naoyuki Matsumoto; Tatsuya Toga; Ryosuke Hayashi; Kaoru Sugasawa; Katsuo Katayanagi; Hiroshi Ide; Isao Kuraoka; Shigenori Iwai

We have developed fluorescent probes for the detection of strand scission in the excision repair of oxidatively damaged bases. They were hairpin-shaped oligonucleotides, each containing an isomer of thymine glycol or 5,6-dihydrothymine as a damaged base in the center, with a fluorophore and a quencher at the 5′- and 3′-ends, respectively. Fluorescence was detected when the phosphodiester linkage at the damage site was cleaved by the enzyme, because the short fragment bearing the fluorophore could not remain in a duplex form hybridized to the rest of the molecule at the incubation temperature. The substrate specificities of Escherichia coli endonuclease III and its human homolog, NTH1, determined by using these probes agreed with those determined previously by gel electrophoresis using 32P-labeled substrates. Kinetic parameters have also been determined by this method. Since different fluorophores were attached to the oligonucleotides containing each lesion, reactions with two types of substrates were analyzed separately in a single tube, by changing the excitation and detection wavelengths. These probes were degraded during an incubation with a cell extract. Therefore, phosphorothioate linkages were incorporated to protect the probes from nonspecific nucleases, and the base excision repair activity was successfully detected in HeLa cells.


Scientific Reports | 2015

Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome

Akihisa Osakabe; Hiroaki Tachiwana; Wataru Kagawa; Naoki Horikoshi; Syota Matsumoto; Mayu Hasegawa; Naoyuki Matsumoto; Tatsuya Toga; Junpei Yamamoto; Fumio Hanaoka; Nicolas Thoma; Kaoru Sugasawa; Shigenori Iwai; Hitoshi Kurumizaka

UV-DDB, an initiation factor for the nucleotide excision repair pathway, recognizes 6–4PP lesions through a base flipping mechanism. As genomic DNA is almost entirely accommodated within nucleosomes, the flipping of the 6–4PP bases is supposed to be extremely difficult if the lesion occurs in a nucleosome, especially on the strand directly contacting the histone surface. Here we report that UV-DDB binds efficiently to nucleosomal 6–4PPs that are rotationally positioned on the solvent accessible or occluded surface. We determined the crystal structures of nucleosomes containing 6–4PPs in these rotational positions, and found that the 6–4PP DNA regions were flexibly disordered, especially in the strand exposed to the solvent. This characteristic of 6–4PP may facilitate UV-DDB binding to the damaged nucleosome. We present the first atomic-resolution pictures of the detrimental DNA cross-links of neighboring pyrimidine bases within the nucleosome, and provide the mechanistic framework for lesion recognition by UV-DDB in chromatin.


Scientific Reports | 2015

SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair

Masaki Akita; Yon Soo Tak; Tsutomu Shimura; Syota Matsumoto; Yuki Okuda-Shimizu; Yuichiro Shimizu; Ryotaro Nishi; Hisato Saitoh; Shigenori Iwai; Toshio Mori; Tsuyoshi Ikura; Wataru Sakai; Fumio Hanaoka; Kaoru Sugasawa

The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER.

Collaboration


Dive into the Shigenori Iwai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Mori

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge