Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeo Tojo is active.

Publication


Featured researches published by Shigeo Tojo.


Molecular Microbiology | 2005

Elaborate transcription regulation of the Bacillus subtilis ilv‐leu operon involved in the biosynthesis of branched‐chain amino acids through global regulators of CcpA, CodY and TnrA

Shigeo Tojo; Takenori Satomura; Kaori Morisaki; Josef Deutscher; Kazutake Hirooka; Yasutaro Fujita

The Bacillus subtilis ilv‐leu operon involved in the biosynthesis of branched‐chain amino acids is under negative regulation mediated by TnrA and CodY, which recognize and bind to their respective cis‐elements located upstream of the ilv‐leu promoter. This operon is known to be under CcpA‐dependent positive regulation. We have currently identified a catabolite‐responsive element (cre) for this positive regulation (bases −96 to −82; +1 is the ilv‐leu transcription initiation base) by means of DNase I‐footprinting in vitro, and deletion and base‐substitution analyses of cre. Under nitrogen‐rich growth conditions in glucose‐minimal medium supplemented with glutamine and amino acids, CcpA and CodY exerted positive and negative regulation of ilv‐leu, respectively, but TnrA did not function. Moreover, CcpA and CodY were able to function without their counteracting regulation of each other, although the CcpA‐dependent positive regulation did not overcome the CodY‐dependent negative regulation. Furthermore, under nitrogen‐limited conditions in glucose‐minimal medium with glutamate as the sole nitrogen source, CcpA and TnrA exerted positive and negative regulation, respectively, but CodY did not function. This CcpA‐dependent positive regulation occurred without the TnrA‐dependent negative regulation. However, the TnrA‐dependent negative regulation did not occur without the CcpA‐dependent positive regulation, raising the possibility that this negative regulation might decrease the CcpA‐dependent positive regulation. The physiological role of this elaborate transcription regulation of the B. subtilis ilv‐leu operon in overall metabolic regulation in this organism is discussed.


Journal of Industrial Microbiology & Biotechnology | 2014

Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements

Kozo Ochi; Yukinori Tanaka; Shigeo Tojo

Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often “silent” under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.


Journal of Bacteriology | 2003

Mannitol-1-Phosphate Dehydrogenase (MtlD) Is Required for Mannitol and Glucitol Assimilation in Bacillus subtilis: Possible Cooperation of mtl and gut Operons

Shouji Watanabe; Miyuki Hamano; Hiroshi Kakeshita; Keigo Bunai; Shigeo Tojo; Hirotake Yamaguchi; Yasutaro Fujita; Sui-Lam Wong; Kunio Yamane

We found that mannitol-1-phosphate dehydrogenase (MtlD), a component of the mannitol-specific phosphotransferase system, is required for glucitol assimilation in addition to GutR, GutB, and GutP in Bacillus subtilis. Northern hybridization of total RNA and microarray studies of RNA from cells cultured on glucose, mannitol, and glucitol indicated that mannitol as the sole carbon source induced hyperexpression of the mtl operon, whereas glucitol induced both mtl and gut operons. The B. subtilis mtl operon consists of mtlA (encoding enzyme IICBA(mt1)) and mtlD, and its transcriptional regulator gene, mtlR, is located 14.4 kb downstream from the mtl operon on the chromosome. The mtlA, mtlD, and mtlR mutants disrupted by the introduction of the pMUTin derivatives MTLAd, MTLDd, and MTLRd, respectively, could not grow normally on either mannitol or glucitol. However, the growth of MTLAd on glucitol was enhanced by IPTG (isopropyl-beta-D-thiogalactopyranoside). This mutant has an IPTG-inducible promoter (Pspac promoter) located in mtlA, and this site corresponds to the upstream region of mtlD. Insertion mutants of mtlD harboring the chloramphenicol resistance gene also could not grow on either mannitol or glucitol. In contrast, an insertion mutant of mtlA could grow on glucitol but not on mannitol in the presence or absence of IPTG. MtlR bound to the promoter region of the mtl operon but not to a DNA fragment containing the gut promoter region.


Journal of Bacteriology | 2004

Negative Transcriptional Regulation of the ilv-leu Operon for Biosynthesis of Branched-Chain Amino Acids through the Bacillus subtilis Global Regulator TnrA

Shigeo Tojo; Takenori Satomura; Kaori Morisaki; Kenichi Yoshida; Kazutake Hirooka; Yasutaro Fujita

The Bacillus subtilis ilv-leu operon is involved in the synthesis of branched-chain amino acids (valine, isoleucine, and leucine). The two- to threefold repression of expression of the ilv-leu operon during logarithmic-phase growth under nitrogen-limited conditions, which was originally detected by a DNA microarray analysis to compare the transcriptomes from the wild-type and tnrA mutant strains, was confirmed by lacZ fusion and Northern experiments. A genome-wide TnrA box search revealed a candidate box approximately 200 bp upstream of the transcription initiation base of the ilv-leu operon, the TnrA binding to which was verified by gel retardation and DNase I footprinting analyses. Deletion and base substitution of the TnrA box sequence affected the ilv-leu promoter activity in vivo, implying that TnrA bound to the box might be able to inhibit the promoter activity, possibly through DNA bending. The negative control of the expression of the ilv-leu operon by TnrA, which is considered to represent rather fine-tuning (two- to threefold), is a novel regulatory link between nitrogen and amino acid metabolism.


Journal of Bacteriology | 2007

Dual Regulation of the Bacillus subtilis Regulon Comprising the lmrAB and yxaGH Operons and yxaF Gene by Two Transcriptional Repressors, LmrA and YxaF, in Response to Flavonoids

Kazutake Hirooka; Satoshi Kunikane; Hiroshi Matsuoka; Kenichi Yoshida; Kanako Kumamoto; Shigeo Tojo; Yasutaro Fujita

Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter beta-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.


Journal of Bacteriology | 2010

Heavy Involvement of Stringent Transcription Control Depending on the Adenine or Guanine Species of the Transcription Initiation Site in Glucose and Pyruvate Metabolism in Bacillus subtilis

Shigeo Tojo; Kanako Kumamoto; Kazutake Hirooka; Yasutaro Fujita

In Bacillus subtilis cells, the GTP level decreases and the ATP level increases upon a stringent response. This reciprocal change in the concentrations of the substrates of RNA polymerase affects the rate of transcription initiation of certain stringent genes depending on the purine species at their transcription initiation sites. DNA microarray analysis suggested that not only the rrn and ilv-leu genes encoding rRNAs and the enzymes for synthesis of branched-chain amino acids, respectively, but also many genes, including genes involved in glucose and pyruvate metabolism, might be subject to this kind of stringent transcription control. Actually, the ptsGHI and pdhABCD operons encoding the glucose-specific phosphoenolpyruvate:sugar phosphotransferase system and the pyruvate dehydrogenase complex were found to be negatively regulated, like rrn, whereas the pycA gene encoding pyruvate carboxylase and the alsSD operon for synthesis of acetoin from pyruvate were positively regulated, like ilv-leu. Replacement of the guanine at position 1 and/or position 2 of ptsGHI and at position 1 of pdhABCD (transcription initiation base at position 1) by adenine changed the negative stringent control of these operons in the positive direction. The initiation bases for transcription of pdhABCD and pycA were newly determined. Then the promoter sequences of these stringent operons were aligned, and the results suggested that the presence of a guanine(s) and the presence of an adenine(s) at position 1 and/or position 2 might be indispensable for negative and positive stringent control, respectively. Such stringent transcription control that affects the transcription initiation rate through reciprocal changes in the GTP and ATP levels likely occurs for numerous genes of B. subtilis.


Journal of Bacteriology | 2009

Regulation of the Bacillus subtilis Divergent yetL and yetM Genes by a Transcriptional Repressor, YetL, in Response to Flavonoids

Kazutake Hirooka; Yusuke Danjo; Yuki Hanano; Satoshi Kunikane; Hiroshi Matsuoka; Shigeo Tojo; Yasutaro Fujita

DNA microarray analysis revealed that transcription of the Bacillus subtilis yetM gene encoding a putative flavin adenine dinucleotide-dependent monooxygenase was triggered by certain flavonoids during culture and was derepressed by disruption of the yetL gene in the opposite orientation situated immediately upstream of yetM, which encodes a putative MarR family transcriptional regulator. In vitro analyses, including DNase I footprinting and gel retardation analysis, indicated that YetL binds specifically to corresponding single sites in the divergent yetL and yetM promoter regions, with higher affinity to the yetM region; the former region overlaps the Shine-Dalgarno sequence of yetL, and the latter region contains a perfect 18-bp palindromic sequence (TAGTTAGGCGCCTAACTA). In vitro gel retardation and in vivo lacZ fusion analyses indicated that some flavonoids (kaempferol, apigenin, and luteolin) effectively inhibit YetL binding to the yetM cis sequence, but quercetin, galangin, and chrysin do not inhibit this binding, implying that the 4-hydroxyl group on the B-ring of the flavone structure is indispensable for this inhibition and that the coexistence of the 3-hydroxyl groups on the B- and C-rings does not allow antagonism of YetL.


Journal of Bacteriology | 2011

Catabolite Repression of the Bacillus subtilis FadR Regulon, Which Is Involved in Fatty Acid Catabolism

Shigeo Tojo; Takenori Satomura; Hiroshi Matsuoka; Kazutake Hirooka; Yasutaro Fujita

The Bacillus subtilis fadR regulon involved in fatty acid degradation comprises five operons, lcfA-fadR-fadB-etfB-etfA, lcfB, fadN-fadA-fadE, fadH-fadG, and fadF-acdA-rpoE. Since the lcfA-fadRB-etfBA, lcfB, and fadNAE operons, whose gene products directly participate in the β-oxidation cycle, had been found to be probably catabolite repressed upon genome-wide transcript analysis, we performed Northern blotting, which indicated that they are clearly under CcpA-dependent catabolite repression. So, we searched for catabolite-responsive elements (cres) to which the complex of CcpA and P-Ser-HPr binds to exert catabolite repression by means of a web-based cis-element search in the B. subtilis genome using known cre sequences, which revealed the respective candidate cre sequences in the lcfA, lcfB, and fadN genes. DNA footprinting indicated that the complex actually interacted with these cres in vitro. Deletion analysis of each cre using the lacZ fusions with the respective promoter regions of the three operons with and without it, indicated that these cres are involved in the CcpA-dependent catabolite repression of the operons in vivo.


Journal of Bacteriology | 2014

CcpA-Mediated Catabolite Activation of the Bacillus subtilis ilv-leu Operon and Its Negation by Either CodY- or TnrA-Mediated Negative Regulation

Yasutaro Fujita; Takenori Satomura; Shigeo Tojo; Kazutake Hirooka

The Bacillus subtilis ilv-leu operon functions in the biosynthesis of branched-chain amino acids. It undergoes catabolite activation involving a promoter-proximal cre which is mediated by the complex of CcpA and P-Ser-HPr. This activation of ilv-leu expression is negatively regulated through CodY binding to a high-affinity site in the promoter region under amino acid-rich growth conditions, and it is negatively regulated through TnrA binding to the TnrA box under nitrogen-limited growth conditions. The CcpA-mediated catabolite activation of ilv-leu required a helix face-dependent interaction of the complex of CcpA and P-Ser-HPr with RNA polymerase and needed a 19-nucleotide region upstream of cre for full activation. DNase I footprinting indicated that CodY binding to the high-affinity site competitively prevented the binding of the complex of CcpA and P-Ser-HPr to cre. This CodY binding not only negated catabolite activation but also likely inhibited transcription initiation from the ilv-leu promoter. The footprinting also indicated that TnrA and the complex of CcpA and P-Ser-HPr simultaneously bound to the TnrA box and the cre site, respectively, which are 112 nucleotides apart; TnrA binding to its box was likely to induce DNA bending. This implied that interaction of TnrA bound to its box with the complex of CcpA and P-Ser-HPr bound to cre might negate catabolite activation, but TnrA bound to its box did not inhibit transcription initiation from the ilv-leu promoter. Moreover, this negation of catabolite activation by TnrA required a 26-nucleotide region downstream of the TnrA box.


Journal of Bacteriology | 2014

The mthA Mutation Conferring Low-Level Resistance to Streptomycin Enhances Antibiotic Production in Bacillus subtilis by Increasing the S-Adenosylmethionine Pool Size

Shigeo Tojo; Ji-Yun Kim; Yukinori Tanaka; Takashi Inaoka; Yoshikazu Hiraga; Kozo Ochi

Certain Str(r) mutations that confer low-level streptomycin resistance result in the overproduction of antibiotics by Bacillus subtilis. Using comparative genome-sequencing analysis, we successfully identified this novel mutation in B. subtilis as being located in the mthA gene, which encodes S-adenosylhomocysteine/methylthioadenosine nucleosidase, an enzyme involved in the S-adenosylmethionine (SAM)-recycling pathways. Transformation experiments showed that this mthA mutation was responsible for the acquisition of low-level streptomycin resistance and overproduction of bacilysin. The mthA mutant had an elevated level of intracellular SAM, apparently acquired by arresting SAM-recycling pathways. This increase in the SAM level was directly responsible for bacilysin overproduction, as confirmed by forced expression of the metK gene encoding SAM synthetase. The mthA mutation fully exerted its effect on antibiotic overproduction in the genetic background of rel(+) but not the rel mutant, as demonstrated using an mthA relA double mutant. Strikingly, the mthA mutation activated, at the transcription level, even the dormant ability to produce another antibiotic, neotrehalosadiamine, at concentrations of 150 to 200 μg/ml, an antibiotic not produced (<1 μg/ml) by the wild-type strain. These findings establish the significance of SAM in initiating bacterial secondary metabolism. They also suggest a feasible methodology to enhance or activate antibiotic production, by introducing either the rsmG mutation to Streptomyces or the mthA mutation to eubacteria, since many eubacteria have mthA homologues.

Collaboration


Dive into the Shigeo Tojo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kozo Ochi

Hiroshima Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yukinori Tanaka

Hiroshima Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge