Shigeo Yoshinari
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shigeo Yoshinari.
Nucleic Acids Research | 2009
Shigeo Yoshinari; Tomoo Shiba; Daniel-Ken Inaoka; Takashi Itoh; Genji Kurisu; Shigeharu Harada; Kiyoshi Kita; Yoh-ichi Watanabe
Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-Å resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself.
BMC Evolutionary Biology | 2009
Shin-ichi Yokobori; Takashi Itoh; Shigeo Yoshinari; Norimichi Nomura; Yoshihiko Sako; Akihiko Yamagishi; Tairo Oshima; Kiyoshi Kita; Yoh-ichi Watanabe
BackgroundWe previously found the first examples of splicing of archaeal pre-mRNAs for homologs of the eukaryotic CBF5 protein (also known as dyskerin in humans) in Aeropyrum pernix, Sulfolobus solfataricus, S. tokodaii, and S. acidocaldarirus, and also showed that crenarchaeal species in orders Desulfurococcales and Sulfolobales, except for Hyperthermus butylicus, Pyrodictium occultum, Pyrolobus fumarii, and Ignicoccus islandicus, contain the (putative) cbf5 intron. However, the exact timing of the intron insertion was not determined and verification of the putative secondary loss of the intron in some lineages was not performed.ResultsIn the present study, we determined approximately two-thirds of the entire coding region of crenarchaeal Cbf5 sequences from 43 species. A phylogenetic analysis of our data and information from the available genome sequences suggested that the (putative) cbf5 intron existed in the common ancestor of the orders Desulfurococcales and Sulfolobales and that probably at least two independent lineages in the order Desulfurococcales lost the (putative) intron.ConclusionThis finding is the first observation of a lineage-specific loss of a pre-mRNA intron in Archaea. As the insertion or deletion of introns in protein-coding genes in Archaea has not yet been seriously considered, our finding suggests the possible difficulty of accurately and completely predicting protein-coding genes in Archaea.
Molecular Microbiology | 2010
Takuma Suematsu; Shin-ichi Yokobori; Hiroyuki Morita; Shigeo Yoshinari; Takuya Ueda; Kiyoshi Kita; Nono Takeuchi; Yoh-ichi Watanabe
Translation elongation factor G (EF‐G) in bacteria plays two distinct roles in different phases of the translation system. EF‐G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post‐termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF‐G are distributed over two different EF‐G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF‐G is also found in bacteria. Two EF‐G paralogues are found in the spirochaete Borrelia burgdorferi, EF‐G1 and EF‐G2. We demonstrate that EF‐G1 is a translocase, while EF‐G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF‐G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF‐3) is present in the reaction. These results indicate that two B. burgdorferi EF‐G paralogues are close relatives to mitochondrial EF‐G paralogues rather than the conventional bacterial EF‐G, in both their phylogenetic and biochemical features.
Journal of Molecular Biology | 2011
Maho Okuda; Tomoo Shiba; Daniel-Ken Inaoka; Kiyoshi Kita; Genji Kurisu; Shigeru Mineki; Shigeharu Harada; Yoh-ichi Watanabe; Shigeo Yoshinari
In Archaea, splicing endonuclease (EndA) recognizes and cleaves precursor RNAs to remove introns. Currently, EndAs are classified into three families according to their subunit structures: homotetramer, homodimer, and heterotetramer. The crenarchaeal heterotetrameric EndAs can be further classified into two subfamilies based on the size of the structural subunit. Subfamily A possesses a structural subunit similar in size to the catalytic subunit, whereas subfamily B possesses a structural subunit significantly smaller than the catalytic subunit. Previously, we solved the crystal structure of an EndA from Pyrobaculum aerophilum. The endonuclease was classified into subfamily B, and the structure revealed that the enzyme lacks an N-terminal subdomain in the structural subunit. However, no structural information is available for crenarchaeal heterotetrameric EndAs that are predicted to belong to subfamily A. Here, we report the crystal structure of the EndA from Aeropyrum pernix, which is predicted to belong to subfamily A. The enzyme possesses the N-terminal subdomain in the structural subunit, revealing that the two subfamilies of heterotetrameric EndAs are structurally distinct. EndA from A. pernix also possesses an extra loop region that is characteristic of crenarchaeal EndAs. Our mutational study revealed that the conserved lysine residue in the loop is important for endonuclease activity. Furthermore, the sequence characteristics of the loops and the positions towards the substrate RNA according to a docking model prompted us to propose that crenarchaea-specific loops and an extra amino acid sequence at the catalytic loop of nanoarchaeal EndA are derived by independent convergent evolution and function for recognizing noncanonical bulge-helix-bulge motif RNAs as substrates.
Biological Chemistry | 1998
Itaru Nitta; Hirohide Nambu; Takaaki Okado; Shigeo Yoshinari; Takuya Ueda; Yaeta Endo; Knud H. Nierhaus; Kimitsuna Watanabe
Previously we demonstrated that ribosomes can synthesize polypeptides in the presence of high concentrations (40-60%) of pyridine without any protein factors. Here we analyze additional ribosomal parameters in 60% pyridine using Escherichia coli ribosomes. Ribosomal subunits once exposed to pyridine failed to re-associate to 70S ribosomes in aqueous buffer systems even in the presence of 20 mM Mg2+, whereas they formed 70S complexes in the presence of 60% pyridine. Two-dimensional gel electrophoresis of ribosomal proteins revealed that some proteins located at the protuberances of the large subunit, e. g. L7/L12 and L11 forming the elongation factor-binding domain, were released in the pyridine system. The aminoglycoside neomycin, a strong inhibitor of the ribosomal (factor-independent) translocation reaction, completely blocked poly(Phe) synthesis and translocation activities in the pyridine system, whereas these activities were not affected at all by gypsophilin, a ribotoxin that inhibits factor-dependent translocation. Another inhibitor of the ribosomal translocation, thiostrepton, had no effect concerning the two activities, which is consistent with the fact that this antibiotic requires L11 for its binding to the ribosome. These results suggest that the ribosomes can perform a translocation reaction in the pyridine system, but in a factor-independent (spontaneous) manner.
Biochemical and Biophysical Research Communications | 2006
Shigeo Yoshinari; Takashi Itoh; Steven J. Hallam; Edward F. DeLong; Shin-ichi Yokobori; Akihiko Yamagishi; Tairo Oshima; Kiyoshi Kita; Yoh-ichi Watanabe
Biochemical and Biophysical Research Communications | 2005
Shigeo Yoshinari; Shinji Fujita; Ryoji Masui; Seiki Kuramitsu; Shin-ichi Yokobori; Kiyoshi Kita; Yoh-ichi Watanabe
Biochemistry | 2005
Feng Zhao; Takashi Ohtsuki; Koji Yamada; Shigeo Yoshinari; Kiyoshi Kita; Yoh Ichi Watanabe; Kimitsuna Watanabe
Gene | 2011
Syuji Yamazaki; Shigeo Yoshinari; Kiyoshi Kita; Yoh-ichi Watanabe; Yutaka Kawarabayasi
Archive | 2013
Yoh-ichi Watanabe; Shigeo Yoshinari