Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeru Hashimoto is active.

Publication


Featured researches published by Shigeru Hashimoto.


PLOS ONE | 2011

GEP100-Arf6-AMAP1-Cortactin Pathway Frequently Used in Cancer Invasion Is Activated by VEGFR2 to Promote Angiogenesis

Ari Hashimoto; Shigeru Hashimoto; Ryo Ando; Kosuke Noda; Eiji Ogawa; Hirokazu Kotani; Mayumi Hirose; Toshi Menju; Masaki Morishige; Toshiaki Manabe; Yoshinobu Toda; Susumu Ishida; Hisataka Sabe

Angiogenesis and cancer invasiveness greatly contribute to cancer malignancy. Arf6 and its effector, AMAP1, are frequently overexpressed in breast cancer, and constitute a central pathway to induce the invasion and metastasis. In this pathway, Arf6 is activated by EGFR via GEP100. Arf6 is highly expressed also in human umbilical vein endothelial cells (HUVECs) and is implicated in angiogenesis. Here, we found that HUVECs also highly express AMAP1, and that vascular endothelial growth factor receptor-2 (VEGFR2) recruits GEP100 to activate Arf6. AMAP1 functions by binding to cortactin in cancer invasion and metastasis. We demonstrate that the same GEP100-Arf6-AMAP1-cortactin pathway is essential for angiogenesis activities, including cell migration and tubular formation, as well as for the enhancement of cell permeability and VE-cadherin endocytosis of VEGF-stimulated HUVECs. Components of this pathway are highly expressed in pathologic angiogenesis, and blocking of this pathway effectively inhibits VEGF- or tumor-induced angiogenesis and choroidal neovascularization. The GEP100-Arf6-AMAP1-cortactin pathway, activated by receptor tyrosine kinases, appears to be common in angiogenesis and cancer invasion and metastasis, and provides their new therapeutic targets.


PLOS ONE | 2011

Engagement of Overexpressed Her2 with GEP100 Induces Autonomous Invasive Activities and Provides a Biomarker for Metastases of Lung Adenocarcinoma

Toshi Menju; Shigeru Hashimoto; Ari Hashimoto; Yutaro Otsuka; Haruka Handa; Eiji Ogawa; Yoshinobu Toda; Hiromi Wada; Hiroshi Date; Hisataka Sabe

Overexpression of Her2/ErbB2/Neu in cancer is often correlated with recurrent distant metastasis, although the mechanism still remains largely elusive. We have previously shown that EGFR, when tyrosine-phosphorylated, binds to GEP100/BRAG2 to activate Arf6, which induces cancer invasion and metastasis. We now show that overexpressed Her2 in lung adenocarcinoma cells also employs GEP100. Like EGFR-GEP100 binding, this association is primarily mediated by the pleckstrin homology (PH) domain of GEP100 and Tyr1139/Tyr1196 of Her2. Tyr1139/Tyr1196 are autonomously phosphorylated, when Her2 is overexpressed. Accordingly, invasive activities mediated by the Her2-GEP100 pathway are not dependent on external factors. Blocking Her2-GEP100 binding, as well as its signaling pathway all inhibit cancer invasive activities. Moreover, our clinical study indicates that co-overexpression of Her2 with GEP100 in primary lung adenocarcinomas of patients is correlated with the presence of their node-metastasis with a statistical significance. Since the GEP100 PH domain interacts with both Her2 and EGFR, targeting this domain may provide novel cancer therapeutics.


Nature Communications | 2016

Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer

Shigeru Hashimoto; Shuji Mikami; Hirokazu Sugino; Ayumu Yoshikawa; Ari Hashimoto; Yasuhito Onodera; Shotaro Furukawa; Haruka Handa; Tsukasa Oikawa; Yasunori Okada; Mototsugu Oya; Hisataka Sabe

Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the Arf6-based mesenchymal pathway to promote invasion and metastasis, similar to breast cancers. In breast cancer cells, ligand-activated receptor tyrosine kinases employ GEP100 to activate Arf6, which then recruits AMAP1; and AMAP1 then binds to the mesenchymal-specific protein EPB41L5, which promotes epithelial–mesenchymal transition and focal adhesion dynamics. In renal cancer cells, lysophosphatidic acid (LPA) activates Arf6 via its G-protein-coupled receptors, in which GTP-Gα12 binds to EFA6. The Arf6-based pathway may also contribute to drug resistance. Our results identify a specific mesenchymal molecular machinery of primary ccRCCs, which is triggered by a product of autotaxin and it is associated with poor outcome of patients.


Journal of Cell Biology | 2016

P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

Ari Hashimoto; Tsukasa Oikawa; Shigeru Hashimoto; Hirokazu Sugino; Ayumu Yoshikawa; Yutaro Otsuka; Haruka Handa; Yasuhito Onodera; Jin-Min Nam; Chitose Oneyama; Masato Okada; Mitsunori Fukuda; Hisataka Sabe

The mevalonate pathway (MVP) is a metabolic pathway associated with tumor invasiveness and is known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. Hashimoto et al. show that MVP-driven cancers require activation of the GTPase Arf6 for invasion and that the MVP substrate Rab11 is required for Arf6 activation.


PLOS ONE | 2013

Co-Overexpression of GEP100 and AMAP1 Proteins Correlates with Rapid Local Recurrence after Breast Conservative Therapy

Rumiko Kinoshita; Jin-Min Nam; Yoichi M. Ito; Kanako C. Hatanaka; Ari Hashimoto; Haruka Handa; Yutaro Otsuka; Shigeru Hashimoto; Yasuhito Onodera; Mitsuchika Hosoda; Shunsuke Onodera; Shinichi Shimizu; Shinya Tanaka; Hiroki Shirato; Mishie Tanino; Hisataka Sabe

A major problem of current cancer research and therapy is prediction of tumor recurrence after initial treatment, rather than the simple biological characterization of the malignancy and proliferative properties of tumors. Breast conservation therapy (BCT) is a well-approved, standard treatment for patients with early stages of breast cancer, which consists of lumpectomy and whole-breast irradiation. In spite of extensive studies, only age and Ki-67 positivity have been identified to be well correlated with local recurrence after BCT. An Arf6 pathway, activated by GEP100 under receptor tyrosine kinases (RTKs) and employs AMAP1 as its effector, is crucial for invasion and metastasis of some breast cancer cells. This pathway activates β1 integrins and perturbs E-cadherin-based adhesions, hence appears to be integral for epithelial-mesenchymal transdifferentiation (EMT). We here show that expression of the Arf6 pathway components statistically correlates with rapid local recurrence after BCT. We retrospectively analyzed four hundred seventy-nine patients who received BCT in Hokkaido University Hospital, and found 20 patients had local recurrence. We then analyzed pathological samples of patients who experienced local recurrence by use of Kaplan-Meier analysis, Stepwise regression analysis and the t-test, coupled with immunostaining, and found that co-overexpression of GEP100 and AMAP1 correlates with rapidity of the local recurrence. Their margin-status, node-positivity, and estrogen receptor (ER)- or progesterone receptor (PgR)-positivity did not correlated with the rapidity. This study is the first to show that expression of a certain set of proteins correlates with the rapidity of local recurrence. Our results are useful not only for prediction, but highlight the possibility of developing novel strategies to block local recurrence. We also discuss why mRNAs encoding these proteins have not been identified to correlate with local recurrence by previous conventional gene expression profiling analyses.


Oncogenesis | 2016

ZEB1 induces EPB41L5 in the cancer mesenchymal program that drives ARF6-based invasion, metastasis and drug resistance

Ari Hashimoto; Shigeru Hashimoto; Hirokazu Sugino; Ayumu Yoshikawa; Yasuhito Onodera; Haruka Handa; Tsukasa Oikawa; Hisataka Sabe

Onset of the cancer mesenchymal program is closely associated with cancer malignancy and drug resistance. Among the different epithelial–mesenchymal transition (EMT)-associated transcriptional factors, ZEB1 has a key role in inducing the mesenchymal phenotypes and stem cell-like properties of different breast cancer cells. ARF6 and its effector AMAP1 are frequently overexpressed in breast cancer cells, and promote invasion, metastasis and drug resistance. EPB41L5 is induced during EMT, and mediates the disruption of E-cadherin-based cell–cell adhesion and the promotion of focal adhesion dynamics. Here we show that EPB41L5 is an integral component of the ARF6-based pathway, which is induced by ZEB1. We found that EPB41L5 is expressed at high levels in malignant breast cancer cells and binds to AMAP1. ZEB1 induced EPB41L5 both in cancer cells and normal cells. This relationship was recaptured with The Cancer Genome Atlas RNASeq data set, and correlated with the poor outcome of the patients. In contrast, diversified events, such as tumor growth factor β1 stimulation, expression of SNAI1 and TP53 mutation, can each cause the induction of ZEB1 and EPB41L5, depending on the cellular context. Our results demonstrated that the ZEB1-EPB41L5 axis is at the core of the cancer mesenchymal program that drives ARF6-based invasion, metastasis and drug resistance of significant populations of primary breast cancers, and is tightly correlated with the poor outcomes of patients.


Scientific Reports | 2018

Necessity of p53-binding to the CDH1 locus for its expression defines two epithelial cell types differing in their integrity

Tsukasa Oikawa; Yutaro Otsuka; Yasuhito Onodera; Mei Horikawa; Haruka Handa; Shigeru Hashimoto; Yutaka Suzuki; Hisataka Sabe

TP53 mutation (i.e., loss of normal-p53) may evoke epithelial-mesenchymal transition (EMT), which was previously attributed to loss of certain miRNAs. However, not all epithelial cells undergo EMT upon TP53 mutation, and the p53-miRNA axis may not fully explain p53 function in epithelial integrity. We here show two modes of epithelial integrity: one involves p53-binding to a nucleotide region and the other does not. In the former, p53 binds to the CDH1 (encoding E-cadherin) locus to antagonize EZH2-mediated H3K27 trimethylation (H3K27me3) to maintain high levels of acetylation of H3K27 (H3K27ac). In the latter, the same locus is not highly acetylated at H3K27, and does not allow p53-binding, nor needs to antagonize EZH2. We moreover demonstrated that although the CDH1 locus in the p53-independent cells, but not in fibroblasts, becomes high-H3K27ac by butyrate and allows p53-biniding, their CDH1 expression does not become dependent on p53. Our results identified novel modes of the epithelial integrity, in which the same epithelial-specific gene locus exhibits different requirement for p53 with different histone modifications among different epithelial cells to warrant its expression.


Cell Communication and Signaling | 2018

Frequent overexpression of AMAP1, an Arf6 effector in cell invasion, is characteristic of the MMTV-PyMT rather than the MMTV-Neu human breast cancer model

Yutaro Otsuka; Tsukasa Oikawa; Hinako Yoshino; Shigeru Hashimoto; Haruka Handa; Hiroki Yamamoto; Ari Hashimoto; Hisataka Sabe

BackgroundThe small GTPase Arf6 and its downstream effector AMAP1 (also called ASAP1/DDEF1) constitute a signaling pathway promoting cell invasion, in which AMAP1 interacts with several different proteins, including PRKD2, EPB41L5, paxillin, and cortactin. Components of this pathway are often overexpressed in human breast cancer cells, to be correlated with poor prognosis of the patients, whereas overexpression of the Arf6 pathway did not correlate with the four main molecular classes of human breast tumors. In this pathway, receptor tyrosine kinases, including EGFR and Her2, activate Arf6 via GEP100. MMTV-PyMT mice and MMTV-Neu mice are well-established models of human breast cancer, and exhibit the early dissemination and the lung metastasis, by utilizing protein tyrosine phosphorylation for oncogenesis. PyMT-tumors and Neu-tumors are known to have overlapping gene expression profiles, which primarily correspond to the luminal B-type of human mammary tumors, although they differ in the time necessary for tumor onset and metastasis. Given the common usage of protein tyrosine phosphorylation, as well as the frequent use of these animal models for studying breast cancer at the molecular level, we here investigated whether mammary tumors in these mouse models utilize the Arf6-based pathway for invasion.MethodsExpression levels of Arf6, AMAP1, and GEP100 were analyzed in PyMT-tumors and Neu-tumors by western blotting. Expression of Arf6 and AMAP1 was also analyzed by immunohistochemistry. The involvement of AMAP1 in invasion, and the possible correlation of its high expression levels with cancer mesenchymal properties were also investigated.ResultsWe found that PyMT-tumors, but not Neu-tumors, frequently overexpress AMAP1 and use it for invasion, whereas both types of tumors expressed Arf6 and GEP100 at different levels. High levels of the AMAP1 expression among PyMT-tumor cells were frequently correlated with loss of the epithelial marker CK8 and also with expression of the mesenchymal marker vimentin both at the primary sites and at sites of the lung metastases.ConclusionsPyMT-tumors appear to frequently utilize the Arf6-based invasive machinery, whereas Neu-tumors do not. Our results suggest that MMTV-PyMT mice, rather than MMTV-Neu mice, are useful to study the Arf6-based mammary tumor malignancies, as a representative model of human breast cancer.


Urologic Oncology-seminars and Original Investigations | 2017

Prognostic significance of erythrocyte protein band 4.1-like5 expression in upper urinary tract urothelial carcinoma ☆

Tatsuaki Daimon; Takeo Kosaka; Eiji Kikuchi; Shuji Mikami; Yasumasa Miyazaki; Ari Hashimoto; Shigeru Hashimoto; Ryuichi Mizuno; Akira Miyajima; Yasunori Okada; Hisataka Sabe; Mototsugu Oya

OBJECTIVESnThe erythrocyte protein band 4.1-like5 (EPB4.1L5) regulates E-cadherin in cancer invasion and metastasis inducing epithelial-to-mesenchymal transition. This study aimed to investigate the biological significance of EPB4.1L5 in upper urinary tract urothelial carcinoma (UTUC).nnnMETHODSnRetrospective analysis of the clinical records of 165 patients with UTUC (Ta-4N0M0) subjected to radical nephroureterectomy and immunohistochemical examination of EPB4.1L5 expression in those tissues.nnnRESULTSnThe median follow-up period was 62.2 months (interquartile range = 77.0). The score of EPB4.1L5 significantly correlated with tumor grade, pathological T stage, and lymphovascular invasion (all P<0.001). The 5-year Kaplan-Meier recurrence-free survival and cancer-specific survival rates were 54.1% and 59.5% in patients with high EPB4.1L5 expression, compared with 81.6% and 87.2%, (all P<0.001) in their counterparts. Multivariate analyses revealed that high expression of EPB4.1L5 was one of the independent prognostic factors for tumor recurrence (P = 0.022, HR = 2.40) and cancer-specific survival (P = 0.015, HR = 2.94).nnnCONCLUSIONnHigh EPB4.1L5 expression was related to worse clinical outcome in patients with UTUC. These results indicated that EPB4.1L5 could provide prognostic information in patients with UTUC regarding epithelial-to-mesenchymal transition.


Small GTPases | 2018

Arf6 and its ZEB1-EPB41L5 mesenchymal axis are required for both mesenchymal- and amoeboid-type invasion of cancer cells

Haruka Handa; Ari Hashimoto; Shigeru Hashimoto; Hisataka Sabe

ABSTRACT Modes of cancer invasion interchange between the mesenchymal type and amoeboid type in response to the microenvironment, in which RhoA and Rac1 are selectively required to perform different modes of actin-cytoskeletal remodeling. Membrane remodeling is another integral part of invasion. Arf6 regulates the recycling of molecules at the cell periphery, and is often overexpressed in malignant cancers together with its effector AMAP1/ASAP1/DDEF1. This pathway promotes mesenchymal-type invasion when AMAP1 binds to EPB41L5, a mesenchymal-specific protein induced by ZEB1. Here we show that the Arf6-AMAP1-EPB41L5 pathway, and ZEB1, are also crucial for amoeboid-type invasion, via receptor tyrosine kinase and G-protein-coupled receptor signaling. Thus, Arf6 appears to be necessary for both RhoA- and Rac1-driven cancer invasion. Moreover, amoeboid-type cancer invasion may require the activation of some type of mesenchymal program within the cancer cells.

Collaboration


Dive into the Shigeru Hashimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge