Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeru Nakamori is active.

Publication


Featured researches published by Shigeru Nakamori.


Applied and Environmental Microbiology | 2003

Production of a doubly chiral compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction.

Masaru Wada; Ayumi Yoshizumi; Yumiko Noda; Michihiko Kataoka; Sakayu Shimizu; Hiroshi Takagi; Shigeru Nakamori

ABSTRACT A practical enzymatic synthesis of a doubly chiral key compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, starting from the readily available 2,6,6-trimethyl-2-cyclohexen-1,4-dione is described. Chirality is first introduced at the C-6 position by a stereoselective enzymatic hydrogenation of the double bond using old yellow enzyme 2 of Saccharomyces cerevisiae, expressed in Escherichia coli, as a biocatalyst. Thereafter, the carbonyl group at the C-4 position is reduced selectively and stereospecifically by levodione reductase of Corynebacterium aquaticum M-13, expressed in E. coli, to the corresponding alcohol. Commercially available glucose dehydrogenase was also used for cofactor regeneration in both steps. Using this two-step enzymatic asymmetric reduction system, 9.5 mg of (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone/ml was produced almost stoichiometrically, with 94% enantiomeric excess in the presence of glucose, NAD+, and glucose dehydrogenase. To our knowledge, this is the first report of the application of S. cerevisiae old yellow enzyme for the production of a useful compound.


Applied and Environmental Microbiology | 2005

Identification and Functional Analysis of Escherichia coli Cysteine Desulfhydrases

Naoki Awano; Masaru Wada; Hirotada Mori; Shigeru Nakamori; Hiroshi Takagi

ABSTRACT In Escherichia coli, three additional proteins having l-cysteine desulfhydrase activity were identified as O-acetylserine sulfhydrylase-A, O-acetylserine sulfhydrylase-B, and MalY protein, in addition to tryptophanase and cystathionine β-lyase, which have been reported previously. The gene disruption for each protein was significantly effective for overproduction of l-cysteine and l-cystine. Growth phenotype and transcriptional analyses suggest that tryptophanase contributes primarily to l-cysteine degradation.


Applied and Environmental Microbiology | 2003

l-Proline Accumulation and Freeze Tolerance in Saccharomyces cerevisiae Are Caused by a Mutation in the PRO1 Gene Encoding γ-Glutamyl Kinase

Yuko Morita; Shigeru Nakamori; Hiroshi Takagi

ABSTRACT We previously isolated a mutant which showed a high tolerance to freezing that correlated with higher levels of intracellular l-proline derived from l-proline analogue-resistant mutants. The mutation responsible for the analogue resistance and l-proline accumulation was a single nuclear dominant mutation. By introducing the mutant-derived genomic library into a non-l-proline-utilizing strain, the mutant was found to carry an allele of the wild-type PRO1 gene encoding γ-glutamyl kinase, which resulted in a single amino acid replacement; Asp (GAC) at position 154 was replaced by Asn (AAC). Interestingly, the allele of PRO1 was shown to enhance the activities of γ-glutamyl kinase and γ-glutamyl phosphate reductase, both of which catalyze the first two steps of l-proline synthesis from l-glutamate and which together may form a complex in vivo. When cultured in liquid minimal medium, yeast cells expressing the mutated γ-glutamyl kinase were found to accumulate intracellular l-proline and showed a prominent increase in cell viability after freezing at −20°C compared to the viability of cells harboring the wild-type PRO1 gene. These results suggest that the altered γ-glutamyl kinase results in stabilization of the complex or has an indirect effect on γ-glutamyl phosphate reductase activity, which leads to an increase in l-proline production in Saccharomyces cerevisiae. The approach described in this paper could be a practical method for breeding novel freeze-tolerant yeast strains.


Journal of Bioscience and Bioengineering | 2002

Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae

Yuko Morita; Shigeru Nakamori; Hiroshi Takagi

In Saccharomyces cerevisiae, the PUT1-encoded proline oxidase and the PUT2-encoded delta1-pyrroline-5-carboxylate dehydrogenase are required to convert proline to glutamate. We recently showed that a put1 disruptant accumulated higher levels of proline intracellularly and conferred higher resistance to freezing stress. Here, we determined the effect of put2 disruption on yeast cell viability under freezing stress. When grown on arginine as the sole nitrogen source, the put2 disruptant showed a significant decrease in cell viability after freezing despite the high proline and arginine contents. This result suggests that delta1-pyrroline-5-carboxylate or glutamate-gamma-semialdehyde, a proline catabolism intermediate, is toxic to yeast cells under freezing stress. In contrast, the survival rate of the wild-type and the put1-disruptant strains was found to increase after freezing in proportion to their arginine contents. This indicates that arginine has a cryoprotective function in yeast. Furthermore, the yeast cells accumulated proline as well as arginine in the vacuole, suggesting that there is a system for the transport of excess proline to the vacuole and that this vacuolar accumulation may be important in the freezing resistance of yeast cells.


Bioscience, Biotechnology, and Biochemistry | 2002

Old Yellow Enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone.

Michihiko Kataoka; Atsushi Kotaka; Akiko Hasegawa; Masaru Wada; Ayumi Yoshizumi; Shigeru Nakamori; Sakayu Shimizu

Microorganisms were screened for ones that reduced 3,5,5-trimethyl-2-cyclohexene-1,4-dione (ketoisophorone; KIP), and several strains were found to produce (6R)-2,2,6-trimethylcyclohexane-1,4-dione (levodione). The enzyme catalyzing the reduction of the C=C bond of KIP to yield (6R)-levodione was isolated from Candida macedoniensis AKU4588. The results of primary structural analysis and its enzymatic properties suggested that the enzyme might be an Old Yellow Enzyme family protein.


Applied and Environmental Microbiology | 2003

Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae

Yukiyasu Terao; Shigeru Nakamori; Hiroshi Takagi

ABSTRACT We have previously reported that l-proline has cryoprotective activity in Saccharomyces cerevisiae. A freeze-tolerant mutant with l-proline accumulation was recently shown to carry an allele of the PRO1 gene encoding γ-glutamyl kinase, which resulted in a single amino acid substitution (Asp154Asn). Interestingly, this mutation enhanced the activities of γ-glutamyl kinase and γ-glutamyl phosphate reductase, both of which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. Here, we found that the Asp154Asn mutant γ-glutamyl kinase was more thermostable than the wild-type enzyme, which suggests that this mutation elevated the apparent activities of two enzymes through a stabilization of the complex. We next examined the gene dosage effect of three l-proline biosynthetic enzymes, including Δ1-pyrroline-5-carboxylate reductase, which converts Δ1-pyrroline-5-carboxylate into l-proline, on l-proline accumulation and freeze tolerance in a non-l-proline-utilizing strain. Overexpression of the wild-type enzymes has no influence on l-proline accumulation, which suggests that the complex is very unstable in nature. However, co-overexpression of the mutant γ-glutamyl kinase and the wild-type γ-glutamyl phosphate reductase was effective for l-proline accumulation, probably due to a stabilization of the complex. These results indicate that both enzymes, not Δ1-pyrroline-5-carboxylate reductase, are rate-limiting enzymes in yeast cells. A high tolerance for freezing clearly correlated with higher levels of l-proline in yeast cells. Our findings also suggest that, in addition to its cryoprotective activity, intracellular l-proline could protect yeast cells from damage by oxidative stress. The approach described here provides a valuable method for breeding novel yeast strains that are tolerant of both freezing and oxidative stresses.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins.

Chikara Hoshikawa; Mika Shichiri; Shigeru Nakamori; Hiroshi Takagi

A toxic l-proline analogue, l-azetidine-2-carboxylic acid (AZC), causes misfolding of the proteins into which it is incorporated competitively with l-proline, thereby inhibiting the growth of the cells. AZC enters budding yeast Saccharomyces cerevisiae cells primarily through the general amino acid permease Gap1, not through the proline-specific permease Put4. We isolated an AZC-hypersensitive mutant that cannot grow even at low concentrations of AZC because of the accumulation of intracellular AZC. By screening through a yeast genomic library, the mutant was found to carry an allele of RSP5 encoding an E3 ubiquitin ligase. A single amino acid change replacing Ala (GCA) at position 401 with Glu (GAA) showed that Ala-401 in the third WW domain (a protein interaction module) is not conserved in the domain. The addition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{NH}}_{4}^{+}\end{equation*}\end{document} to yeast cells growing on l-proline induced rapid ubiquitination, endocytosis, and vacuolar degradation of the plasma membrane protein Gap1. However, immunoblot and permease assays indicated that Gap1 in the rsp5 mutant remained stable and active on the plasma membrane probably with no ubiquitination, leading to AZC accumulation and hypersensitivity. The rsp5 mutants also showed hypersensitivity to various stresses (toxic amino acid analogues, high temperature in a rich medium, and oxidative treatments) and defects in spore growth. These results suggest that Rsp5 is involved in selective degradation of abnormal proteins and specific proteins for spore growth, in addition to nitrogen-regulated degradation of Gap1. Furthermore, Ala-401 of Rsp5 was considered to have an important role in the ubiquitination of targeted proteins.


Applied and Environmental Microbiology | 2006

Effect of Drug Transporter Genes on Cysteine Export and Overproduction in Escherichia coli

Satoshi Yamada; Naoki Awano; Kyoko Inubushi; Eri Maeda; Shigeru Nakamori; Kunihiko Nishino; Akihito Yamaguchi; Hiroshi Takagi

ABSTRACT l-Cysteine is an important amino acid in terms of its industrial applications. We previously found a marked production of l-cysteine from glucose in recombinant Escherichia coli cells expressing an altered cysE gene encoding feedback inhibition-insensitive serine acetyltransferase. Also, a lower level of cysteine desulfhydrase (CD) activity, which is involved in l-cysteine degradation, increased l-cysteine productivity in E. coli. The use of an l-cysteine efflux system could be promising for breeding l-cysteine overproducers. In addition to YdeD and YfiK, which have been reported previously as l-cysteine exporter proteins in E. coli, we analyzed the effects of 33 putative drug transporter genes in E. coli on l-cysteine export and overproduction. Overexpression of the acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, and yojIH genes reversed the growth inhibition of tnaA (the major CD gene)-disrupted E. coli cells by l-cysteine. We also found that overexpression of these eight genes reduces intracellular l-cysteine levels after cultivation in the presence of l-cysteine. Amino acid transport assays showed that Bcr overexpression conferring bicyclomycin and tetracycline resistance specifically promotes l-cysteine export driven by energy derived from the proton gradient. When a tnaA-disrupted E. coli strain expressing the altered cysE gene was transformed with a plasmid carrying the bcr gene, the transformant exhibited more l-cysteine production than cells carrying the vector only. A reporter gene assay suggested that the bcr gene is constitutively expressed at a substantial level. These results indicate that the multidrug transporter Bcr in the major facilitator family is involved in l-cysteine export and overproduction in genetically engineered E. coli cells.


Applied Microbiology and Biotechnology | 2003

Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli

Naoki Awano; Masaru Wada; A. Kohdoh; T. Oikawa; Hiroshi Takagi; Shigeru Nakamori

Abstract. In Escherichia coli, the enzyme called cysteine desulfhydrase (CD), which is responsible for l-cysteine degradation, was investigated by native-PAGE and CD activity staining of crude cell extracts. Analyses with gene-disrupted mutants showed that CD activity resulted from two enzymes: tryptophanase (TNase) encoded by tnaA and cystathionine β-lyase (CBL) encoded by metC. It was also found that TNase synthesis was induced by the presence of l-cysteine. The tnaA and metC mutants transformed with the plasmid containing the gene for feedback-insensitive serine acetyltransferase exhibited higher l-cysteine productivity than the wild-type strain carrying the same plasmid. These results indicated that TNase and CBL did act on l-cysteine degradation in E. coli cells.


Journal of Bacteriology | 2000

Saccharomyces cerevisiae Σ1278b Has Novel Genes of the N-Acetyltransferase Gene Superfamily Required for l-Proline Analogue Resistance

Hiroshi Takagi; Mika Shichiri; Miho Takemura; Miho Mohri; Shigeru Nakamori

We discovered on the chromosome of Saccharomyces cerevisiae Sigma 1278b novel genes involved in L-proline analogue L-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of the L-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Sigma 1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable for L-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of the N-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required for L-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Sigma 1278b background strains. When this novel MPR1 or MPR2 gene (sigma 1278b gene for L-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to L-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.

Collaboration


Dive into the Shigeru Nakamori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masakazu Takahashi

Fukui Prefectural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge