Shigeru Oowada
St. Marianna University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shigeru Oowada.
Free Radical Research | 2006
Masato Kamibayashi; Shigeru Oowada; Hiroaki Kameda; Taiichi Okada; Osamu Inanami; Shunsaku Ohta; Toshihiko Ozawa; Keisuke Makino; Yashige Kotake
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.
Analytical Biochemistry | 2009
Shunji Kohri; Hirotada Fujii; Shigeru Oowada; Nobuyuki Endoh; Yoshimi Sueishi; Miku Kusakabe; Masashi Shimmei; Yashige Kotake
A new method is proposed for the evaluation of oxygen radical absorbance capacity (ORAC). The current fluorescence-based ORAC assay (ORAC-FL) is an indirect method that monitors the antioxidants ability to protect the fluorescent probe from free radical-mediated damage, and an azo-radical initiator, AAPH (2,2-azobis(2-amidinopropane) dihydrochloride), has been used as a thermal free radical source. The new ORAC assay employs a short in situ photolysis of AAPH to generate free radicals. The electron paramagnetic resonance (EPR) spin trapping method was employed to identify and quantify AAPH radicals. In the presence of antioxidant, the level of AAPH radicals was decreased, and ORAC-EPR values were calculated following a simple kinetic formulation. Alkyl-oxy radical was identified as the sole decomposition product from AAPH; therefore, we concluded that ORAC-FL is the assay equivalent to alkyl-oxy radical scavenging capacity measurement. ORAC-EPR results for several antioxidants and human serum indicated that the overall tendency is in agreement with ORAC-FL, but absolute values showed significant discrepancies. ORAC-EPR is a rapid and simple method that is especially suitable for thermally labile biological specimens because the sample heating is not required for free radical production.
Cancer Letters | 2009
Aki Ogura; Shigeru Oowada; Yasuhiro Kon; Aki Hirayama; Hironobu Yasui; Shunsuke Meike; Saori Kobayashi; Mikinori Kuwabara; Osamu Inanami
Mitochondria in mammalian cells are well-known to play an important role in the intrinsic pathway of genotoxic-agent-induced apoptosis by releasing cytochrome c into cytosol and to be a major source of reactive oxygen species (ROS). The aim of this study was to examine whether mitochondrial ROS are involved in radiation-induced apoptotic signaling in A549 cells. Post-irradiation treatment with N-acetyl-L-cysteine (NAC) inhibited cytochrome c release from mitochondria but did not affect expression levels of Bcl-2, Bcl-X(L) and Bax, suggesting that late production of ROS triggered cytochrome c release. Experiments using DCFDA (a classical ROS fluorescence probe) and MitoAR (a novel mitochondrial ROS probe) demonstrated that intracellular and mitochondrial ROS were enhanced 6h after X irradiation. Furthermore, the O(2)(-*) production ability of mitochondria isolated from A549 cells was evaluated by ESR spectroscopy combined with a spin-trapping reagent (CYPMPO). When isolated mitochondria were incubated with NADH, succinate and CYPMPO, an ESR spectrum due to CYPMPO-OOH was detected. This NADH/succinate-dependent O(2)(-*) production from mitochondria of irradiated cells was significantly increased in comparison with that of unirradiated cells. These results indicate that ionizing radiation enhances O(2)(-*) production from mitochondria to trigger cytochrome c release in A549 cells.
Nephron Experimental Nephrology | 2004
Takako Yokozawa; Noriko Yamabe; Eun Ju Cho; Takako Nakagawa; Shigeru Oowada
To investigate the effects of Hachimi-jio-gan on diabetic nephropathy, we employed an animal model, rats subjected to sub-total nephrectomy followed by streptozotocin injection, and administered Hachimi-jio-gan orally at a dose of 50, 100 or 200 mg/kg body weight/day for 15 weeks. The administration of Hachimi-jio-gan reduced dose-dependently the elevated blood glucose and urinary protein excretion levels in rats with diabetic nephropathy over the experimental period, whereas it increased creatinine clearance significantly, suggesting that Hachimi-jio-gan would prevent or delay the progression of diabetic nephropathy. In addition, the serum glycosylated protein and urea nitrogen levels were markedly elevated in rats with diabetic nephropathy compared with normal rats, and were significantly reduced by the administration of Hachimi-jio-gan, whereas Hachimi-jio-gan reversed the decrease in the serum albumin level. The serum triglyceride and total cholesterol concentrations were reduced by Hachimi-jio-gan, implying that Hachimi-jio-gan would improve the metabolic disorder of lipids caused by diabetic nephropathy. Moreover, Hachimi-jio-gan inhibited lipid peroxidation in the serum and kidney, which suggests that Hachimi-jio-gan would ameliorate oxidative stress associated with diabetic nephropathy. Furthermore, the disorders of the glucose-dependent metabolic pathway due to this pathological condition were also normalized by the administration of Hachimi-jio-gan through decreases in advanced glycation end-product formation and sorbitol levels in the kidney. Hachimi-jio-gan protected against the development of renal lesions, glomerular sclerosis, tubulointerstitial lesions, mesangial matrix expansion and arteriolar sclerosis, estimated by histopathological evaluation and scoring. This study suggests that Hachimi-jio-gan may be a novel therapeutic approach to improving diabetic nephropathy.
Journal of Clinical Biochemistry and Nutrition | 2012
Yoshimi Sueishi; Misa Ishikawa; Daisuke Yoshioka; Nobuyuki Endoh; Shigeru Oowada; Masashi Shimmei; Hirotada Fujii; Yashige Kotake
Recently, we proposed an oxygen radical absorbance capacity method that directly quantifies the antioxidant’s scavenging capacity against free radicals and evaluated the radical scavenging abilities for water soluble antioxidant compounds. In this study, we determined the radical scavenging abilities of lipophilic antioxidants which were solubilized by cyclodextrin in water. Commonly employed fluorescence-based method measures the antioxidant’s protection capability for the fluorescent probe, while we directly quantify free-radical level using electron paramagnetic resonance spin trapping technique. In addition, the spin trapping-based method adopted controlled UV-photolysis of azo-initiator for free radical generation, but in fluorescence-based method, thermal decomposition of azo-initiator was utilized. We determined the radical scavenging abilities of seven well-known lipophilic antioxidants (five flavonoids, resveratrol and astaxanthin), using methylated β-cyclodextrin as a solubilizer. The results indicated that the agreement between spin trapping-based and fluorescence-based values was only fair partly because of a large variation in the previous fluorescence-based data. Typical radical scavenging abilities in trolox equivalent unit are: catechin 0.96; epicatechin 0.94; epigallocatechin gallate 1.3; kaempferol 0.37; myricetin 3.2; resveratrol 0.64; and astaxanthin 0.28, indicating that myricetin possesses the highest antioxidant capacity among the compounds tested. We sorted out the possible causes of the deviation between the two methods.
Journal of Pharmacy and Pharmacology | 2006
Sumiyo Sasaki; Takako Yokozawa; Eun Ju Cho; Shigeru Oowada; Mujo Kim
The protective effect of γ‐aminobutyric acid (GABA) against chronic renal failure (CRF) was investigated using a remnant kidney model with 5/6 nephrectomized rats. Nephrectomy led to renal dysfunction, which was evaluated via several parameters including serum urea nitrogen, creatinine (Cr) and Cr clearance. However, the administration of GABA ameliorated renal dysfunction, and a longer administration period of GABA increased its protective effect. In addition, nephrectomized control rats showed an elevation in the fractional excretion of sodium (FENa) with an increase in urinary sodium, while GABA led to a significant decline in FENa. Moreover, nephrectomy resulted in a decrease of serum albumin and an increase of urinary protein with a change in the urinary protein pattern, whereas the rats administered GABA showed improvement in these changes associated with CRF caused by nephrectomy. This suggests that GABA would inhibit the disease progression and have a protective role against CRF. As one of the risk factors for CRF progression, hypertension was also regulated by GABA. The results also indicate that GABA may play a protective role against CRF through improvement of the serum lipid profile, with reductions in triglyceride and total cholesterol. Furthermore, nephrectomy led to renal oxidative stress with a decrease in the activity of antioxidative enzymes and elevation of lipid peroxidation. The administration of GABA attenuated oxidative stress induced by nephrectomy through an increase in superoxide dismutase and catalase, and decrease in lipid peroxidation. The histopathological lesions, including glomerular, tubular and interstitial lesions, under nephrectomy were also improved by GABA with the inhibition of fibronectin expression. This study demonstrated that GABA attenuated renal dysfunction via regulation of blood pressure and lipid profile, and it also ameliorated the oxidative stress induced by nephrectomy, suggesting the promising potential of GABA in protecting against renal failure progression.
Journal of Clinical Biochemistry and Nutrition | 2009
Nobuyuki Endo; Shigeru Oowada; Yoshimi Sueishi; Masashi Shimmei; Keisuke Makino; Hirotada Fujii; Yashige Kotake
We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system.
Journal of Clinical Biochemistry and Nutrition | 2012
Shigeru Oowada; Nobuyuki Endo; Hiromi Kameya; Masashi Shimmei; Yashige Kotake
We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool.
Zeitschrift für Physikalische Chemie | 2010
Yoshimi Sueishi; Daisuke Yoshioka; Shigeru Oowada; Nobuyuki Endoh; Shunji Kohri; Hirotada Fujii; Masashi Shimmei; Yashige Kotake
Abstract The oxygen radical absorbance capacity (ORAC) method employs a water soluble azo-radical initiator, AAPH (2,2’-azobis(2-amidinopropane) dihydrochloride) as a free radical generator, by which the fluorescent probe fluorescein is damaged to result in the loss of fluorescence. Antioxidants can protect the probe from the damage and the degree of protection is quantified. Because AAPH has been used as a lipid-peroxidation reagent, “oxygen radical” in ORAC is generally accepted as peroxyl radicals; however, in the present spin trapping experiments using a newly developed spin trap, CYPMPO, there was no indication of peroxyl-radical formation in AAPH decomposition in aqueous media. These spin trapping studies demonstrated that alkoxyl (RO·) radical adduct was the sole product of AAPH decomposition. In contrast, alkyl-peroxyl (ROO·) radical was spin-trapped during the decomposition of a lipid soluble azo-radical initiator AIBN (azobis(isobutyronitrile)) in non-aqueous media. We speculate that alkyl-peroxyl radicals are short-lived in water, rapidly converted into alkoxyl radicals. Although the possibility that ORAC method monitors peroxyl-radical scavenging activity cannot be completely eliminated, spin trapping evidence strongly indicates that ORAC method is a scavenging capacity assay for alkoxyl radicals.
Journal of Clinical Biochemistry and Nutrition | 2016
Aki Hirayama; Takuya Okamoto; Satomi Kimura; Yumiko Nagano; Hirofumi Matsui; Tsutomu Tomita; Shigeru Oowada; Kazumasa Aoyagi
Kangen-karyu, a prescription containing six herbs, has been shown to achieve its pharmacological effect through oxidative stress-dependent pathways in animal models. The aim of this study is to investigate the relationship between the antioxidative effect and pharmacological mechanisms of Kangen-karyu, specifically its body temperature elevating effect in humans. Healthy human volunteers, age 35 ± 15 years old, were enrolled in this study. Surface body temperature, serum nitrite, reactive oxygen species (ROS) scavenging activities, and inflammatory cytokines were investigated before and 120 min after Kangen-karyu oral intake. Kangen-karyu significantly increased the surface-body temperature of the entire body; this effect was more remarkable in the upper body and continued for more than 120 min. Accompanying this therapeutic effect, serum nitrite levels were increased 120 min after oral administration. Serum ROS scavenging activities were enhanced against singlet oxygen and were concomitantly decreased against the alkoxyl radical. Serum nitrite levels and superoxide scavenging activities were positively correlated, suggesting that Kangen-karyu affects the O2•−-NO balance in vivo. Kangen-karyu had no effect on IL-6, TNF-α and adiponectin levels. These results indicate that the therapeutic effect of Kangen-karyu is achieved through NO- and ROS-dependent mechanisms. Further, this mechanism is not limited to ROS production, but includes ROS-ROS or ROS-NO interactions.