Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeru Tokita is active.

Publication


Featured researches published by Shigeru Tokita.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus

Ryo Yoshimoto; Yasuhisa Miyamoto; Ken Shimamura; Akane Ishihara; Kazuhiko Takahashi; Hidehito Kotani; Airu S. Chen; Howard Y. Chen; Douglas J. MacNeil; Akio Kanatani; Shigeru Tokita

Histamine H3 receptors (H3Rs) are located on the presynaptic membranes and cell soma of histamine neurons, where they negatively regulate the synthesis and release of histamine. In addition, H3Rs are also located on nonhistaminergic neurons, acting as heteroreceptors to regulate the releases of other amines such as dopamine, serotonin, and norepinephrine. The present study investigated the effects of H3R ligands on appetite and body-weight regulation by using WT and H3R-deficient mice (H3RKO), because brain histamine plays a pivotal role in energy homeostasis. The results showed that thioperamide, an H3R inverse agonist, increases, whereas imetit, an H3R agonist, decreases appetite and body weight in diet-induced obese (DiO) WT mice. Moreover, in DiO WT mice, but not in DiO H3RKO mice, imetit reduced fat mass, plasma concentrations of leptin and insulin, and hepatic triglyceride content. The anorexigenic effects of imetit were associated with a reduction in histamine release, but a comparable reduction in histamine release with α-fluoromethylhistidine, an inhibitor of histamine synthesis, increased appetite. Moreover, the anorexigenic effects of imetit were independent of the melanocortin system, because imetit comparably reduced appetite in melanocortin 3 and 4 receptor-deficient mice. The results provide roles of H3Rs in energy homeostasis and suggest a therapeutic potential for H3R agonists in the treatment of obesity and diabetes mellitus.


Journal of Medicinal Chemistry | 2008

Synthesis, structure-activity relationships, and biological profiles of a quinazolinone class of histamine H3 receptor inverse agonists.

Tsuyoshi Nagase; Takashi Mizutani; Shiho Ishikawa; Etsuko Sekino; Takahide Sasaki; Takashi Fujimura; Sayaka Ito; Yuko Mitobe; Yasuhisa Miyamoto; Ryo Yoshimoto; Takeshi Tanaka; Akane Ishihara; Norihiro Takenaga; Shigeru Tokita; Takehiro Fukami; Nagaaki Sato

A new series of quinazolinone derivatives was synthesized and evaluated as nonimidazole H 3 receptor inverse agonists. 2-Methyl-3-(4-[[3-(1-pyrrolidinyl)propyl]oxy]phenyl)-5-(trifluoromethyl)-4(3 H)-quinazolinone ( 1) was identified as a promising derivative for further evaluation following optimization of key parameters. Compound 1 has potent H 3 inverse agonist activity and excellent selectivity over other histamine receptor subtypes and a panel of 115 unrelated diverse binding sites. Compound 1 also shows satisfactory pharmacokinetic profiles and brain penetrability in laboratory animals. Two hours after oral administration of 30 mg/kg of 1 to SD rats, significant elevation of brain histamine levels was observed where the brain H 3 receptor was highly occupied (>90%). On the basis of species differences in P-glycoprotein (P-gp) susceptibility of 1 between human and rodent P-gps, the observed rodent brain permeability of 1 is significantly limited by P-gp mediated efflux in rodents, whereas the extent of P-gp mediated efflux in humans should be very small or negligible. The potential of 1 to be an efficacious drug was demonstrated by its excellent brain penetrability and receptor occupancy in P-gp-deficient CF-1 mice.


Cell and Tissue Research | 2009

Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice.

Junko Ito; Masahiko Ito; Hirohide Nambu; Toru Fujikawa; Kenichi Tanaka; Hisashi Iwaasa; Shigeru Tokita

G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors and regulate a variety of physiological and disease processes. Although the roles of many non-odorant GPCRs have been identified in vivo, several GPCRs remain orphans (oGPCRs). The gastrointestinal (GI) tract is the largest endocrine organ and is a promising target for drug discovery. Given their close link to physiological function, the anatomical and histological expression profiles of benchmark GI-related GPCRs, such as the cholecystokinin-1 receptor and GPR120, and 106 oGPCRs were investigated in the mucosal and muscle-myenteric nerve layers in the GI tract of C57BL/6J mice by quantitative real-time polymerase chain reaction. The mRNA expression patterns of these benchmark molecules were consistent with previous in situ hybridization and immunohistochemical studies, validating the experimental protocols in this study. Of 96 oGPCRs with significant mRNA expression in the GI tract, several oGPCRs showed unique expression patterns. GPR85, GPR37, GPR37L1, brain-specific angiogenesis inhibitor (BAI) 1, BAI2, BAI3, and GPRC5B mRNAs were preferentially expressed in the muscle-myenteric nerve layer, similar to GPCRs that are expressed in both the central and enteric nerve systems and that play multiple regulatory roles throughout the gut-brain axis. In contrast, GPR112, trace amine-associated receptor (TAAR) 1, TAAR2, and GPRC5A mRNAs were preferentially expressed in the mucosal layer, suggesting their potential roles in the regulation of secretion, immunity, and epithelial homeostasis. These anatomical and histological mRNA expression profiles of oGPCRs provide useful clues about the physiological roles of oGPCRs in the GI tract.


Bioorganic & Medicinal Chemistry Letters | 2009

Development of a selective and potent radioactive ligand for histamine H3 receptors: A compound potentially useful for receptor occupancy studies

Yuko Mitobe; Sayaka Ito; Takashi Mizutani; Tsuyoshi Nagase; Nagaaki Sato; Shigeru Tokita

Radioligands are powerful tools for examining the pharmacological profiles of chemical leads and thus facilitate drug discovery. In this study, we identified and characterized 3-([1,1,1-(3)H]methyl)-2-(4-{[3-(1-pyrrolidinyl)propyl]oxy} phenyl)-4(3H)-quinazolinone ([(3)H]1) as a potent and selective radioligand for histamine H(3) receptors. Radioligand [(3)H]1 exhibited appreciable specific signal in brain slices prepared from wild-type mice but not from histamine H(3) receptor-deficient mice, demonstrating the specificity and utility of [(3)H]1 as a selective histamine H(3) receptor radioligand for ex-vivo receptor occupancy assays.


Synapse | 2009

Inverse agonist histamine H3 receptor PET tracers labelled with carbon-11 or fluorine-18

Terence G. Hamill; Nagaaki Sato; Makoto Jitsuoka; Shigeru Tokita; Sandra Sanabria; Wai-si Eng; Christine Ryan; Stephen Krause; Norihiro Takenaga; Shil Patel; Zhizhen Zeng; David L. Williams; Cyrille Sur; Richard Hargreaves; H. Donald Burns

Two histamine H3 receptor (H3R) inverse agonist PET tracers have been synthesized and characterized in preclinical studies. Each tracer has high affinity for the histamine H3 receptor, has suitable lipophilicity, and neither is a substrate for the P‐glycoprotein efflux pump. A common phenolic precursor was used to synthesize each tracer with high specific activity and radiochemical purity by an alkylation reaction using either [11C]MeI or [18F]FCD2Br. Autoradiographic studies in rhesus monkey and human brain slices showed that each tracer had a widespread distribution with high binding densities in frontal cortex, globus pallidus and striatum, and lower uptake in cerebellum. The specificity of this expression pattern was demonstrated by the blockade of the autoradiographic signal by either the H3R agonist R‐α‐methylhistamine or a histamine H3R inverse agonist. In vivo PET imaging studies in rhesus monkey showed rapid uptake of each tracer into the brain with the same distribution seen in the autoradiographic studies. Each tracer could be blocked by pretreatment with a histamine H3R inverse agonist giving a good specific signal. Comparison of the in vitro metabolism of each compound showed slower metabolism in human liver microsomes than in rhesus monkey liver microsomes, with each compound having a similar clearance rate in humans. The in vivo metabolism of 1b in rhesus monkey showed that at 60 min, ∼35% of the circulating counts were due to the parent. These tracers are very promising candidates as clinical PET tracers to both study the histamine H3R system and measure receptor occupancy of H3R therapeutic compounds. Synapse 63:1122–1132, 2009.


Peptides | 2009

Identification of a stable chemerin analog with potent activity toward ChemR23.

Ken Shimamura; Masao Matsuda; Yasuhisa Miyamoto; Ryo Yoshimoto; Toru Seo; Shigeru Tokita

Chemerin is a novel peptide that was identified as a natural ligand for ChemR23. As it has been reported to be involved in the regulation of immune responses and adipogenesis, chemerin may have a variety of physiological functions. Chemerin is synthesized as a precursor (prochemerin) and is proteolytically activated and inactivated in sequential steps, which control its physiological roles in a coordinated manner. Chemerin-9 (chemerin148-156) was previously identified as the smallest peptide with low nanomolar potency. However, like mature chemerin, chemerin-9 is rapidly degraded and inactivated in plasma, which has limited the use of chemerin-9 in in vivo experiments. In order to identify stable chemerin analogs that facilitate in vivo studies, we synthesized a series of chemerin-9 analogs and examined intrinsic activity and metabolic stability. We identified an agonistic and metabolically stable chemerin-9 analog (d-Tyr(147)-[d-Ser(151), d-Ala(154), Tic(155)]chemerin148-156) that shows enhanced plasma exposure with prolonged half-life in mice upon intraperitoneal administration. Improvement of metabolic stability resulted in a reduction in the plasma free fatty acid levels in fasted mice, which cannot be accomplished by unstable-mouse chemerin-9. This reduction in plasma free fatty acids reflects the anti-lipolysis activity of chemerin-9 and analogs in mouse primary adipocytes. The discovery of a metabolically stable chemerin analog will facilitate investigation of the pharmacological roles of chemerin in vivo. Moreover, this stable chemerin analog might provide new therapeutic approaches to inflammatory diseases such as asthma and metabolic disorders such as obesity and diabetes where ChemR23 activation may be of benefit.


British Journal of Pharmacology | 2010

Mechanism of the anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist in mice.

Masahiko Ito; Akane Ishihara; Akira Gomori; Hiroko Matsushita; Makoto Ito; Jm Metzger; Donald J. Marsh; Yuji Haga; Hisashi Iwaasa; Shigeru Tokita; Norihiro Takenaga; Nagaaki Sato; Douglas J. MacNeil; Minoru Moriya; Akio Kanatani

Background and purpose:  Melanin‐concentrating hormone (MCH) is an orexigenic neuropeptide expressed in the lateral hypothalamus that is involved in feeding and body weight regulation. Intracerebroventricular infusion of a peptidic MCH1 receptor antagonist ameliorated obesity in murine models. Recently, small molecule MCH1 receptor antagonists have been developed and characterized for the treatment of obesity. However, little is known of the mechanism of the anti‐obesity effects of MCH1 receptor antagonists.


NeuroImage | 2011

Synthesis, characterization, and monkey positron emission tomography (PET) studies of [18F]Y1-973, a PET tracer for the neuropeptide Y Y1 receptor.

Eric Hostetler; Sandra M. Sanabria-Bohórquez; Hong Fan; Zhizhen Zeng; Liza Gantert; Mangay Williams; Patricia Miller; Stacey O'Malley; Minoru Kameda; Makoto Ando; Nagaaki Sato; Satoshi Ozaki; Shigeru Tokita; Hisashi Ohta; David L. Williams; Cyrille Sur; Jacquelynn J. Cook; H. Donald Burns; Richard Hargreaves

Neuropeptide Y receptor subtype 1 (NPY Y1) has been implicated in appetite regulation, and antagonists of NPY Y1 are being explored as potential therapeutics for obesity. An NPY Y1 PET tracer is useful for determining the level of target engagement by NPY Y1 antagonists in preclinical and clinical studies. Here we report the synthesis and evaluation of [(18)F]Y1-973, a novel PET tracer for NPY Y1. [(18)F]Y1-973 was radiolabeled by reaction of a primary chloride with [(18)F]KF/K2.2.2 followed by deprotection with HCl. [(18)F]Y1-973 was produced with high radiochemical purity (>98%) and high specific activity (>1000 Ci/mmol). PET studies in rhesus monkey brain showed that the distribution of [(18)F]Y1-973 was consistent with the known NPY Y1 distribution; uptake was highest in the striatum and cortical regions and lowest in the pons, cerebellum nuclei, and brain stem. Blockade of [(18)F]Y1-973 uptake with NPY Y1 antagonist Y1-718 revealed a specific signal that was dose-dependently reduced in all regions of grey matter to a similarly low level of tracer uptake, indicative of an NPY Y1 specific signal. In vitro autoradiographic studies with [(18)F]Y1-973 in rhesus monkey and human brain tissue slices revealed an uptake distribution consistent with the in vivo PET studies. Highest binding density was observed in the dentate gyrus, caudate-putamen, and cortical regions; moderate binding density in the hypothalamus and thalamus; and lowest binding density in the globus pallidus and cerebellum. In vitro saturation binding studies in rhesus monkey and human caudate-putamen homogenates confirmed a similarly high B(max)/K(d) ratio for [(18)F]Y1-973, suggesting the tracer may provide a specific signal in human brain of similar magnitude to that observed in rhesus monkey. [(18)F]Y1-973 is a suitable PET tracer for imaging NPY Y1 in rhesus monkey with potential for translation to human PET studies.


Lipids | 2009

Development of a High-Density Assay for Long-Chain Fatty Acyl-CoA Elongases

Hidefumi Kitazawa; Yasuhisa Miyamoto; Ken Shimamura; Shigeru Tokita

We established a convenient assay method for measuring elongation of very long chain fatty acids (ELOVLs) using a Unifilter-96 GF/C plate. The Unifilter GF/C plate preferentially interacts with hydrophobic end products of ELOVLs (i.e., long chain fatty acid), with minimal malonyl-CoA (C2 unit donor for fatty acid elongation) interaction. This new method results in the quick separation and detection of [14C] incorporated end products (e.g., [14C] palmitoyl-CoA) from reaction mixtures containing excessive amounts of [14C] malonyl-CoA. In the Unifilter-96 GF/C plate assay, recombinantly expressed human ELOVLs (i.e., ELOVL1,-2,-3,-5 and -6) displayed appreciable assay windows (>2-fold vs. mock-transfected control), enabling us to conduct comprehensive substrate profiling of ELOVLs. The substrate concentration profile of ELOVL6 in the Unifilter-96 GF/C plate assay is consistent with that obtained from the conventional liquid extraction method, thus, supporting the reliability of the Unifilter-96 GF/C plate assay. We then examined the substrate specificities of ELOVLs in a comprehensive fashion. As previously reported, ELOVL1, -3 and -6 preferably elongated the saturated fatty acyl-CoAs while ELOVL2 and ELOVL5 preferentially elongated the polyunsaturated fatty acyl-CoAs. This further confirms the Unifilter-96 GF/C plate assay reliability. Taken together, our newly developed assay provides a convenient and comprehensive assay platform for ELOVLs, allowing investigators to conduct high density screening and characterization of ELOVLs chemical tools.


Journal of Medicinal Chemistry | 2009

Discovery of Novel Benzoxazinones as Potent and Orally Active Long Chain Fatty Acid Elongase 6 Inhibitors

Takashi Mizutani; Shiho Ishikawa; Tsuyoshi Nagase; Hidekazu Takahashi; Takashi Fujimura; Takahide Sasaki; Ken Shimamura; Yasuhisa Miyamoto; Hidefumi Kitazawa; Maki Kanesaka; Ryo Yoshimoto; Katsumi Aragane; Shigeru Tokita; Nagaaki Sato

A series of benzoxazinones was synthesized and evaluated as novel long chain fatty acid elongase 6 (ELOVL6) inhibitors. Exploration of the SAR of the UHTS lead 1a led to the identification of (S)-1y that possesses a unique chiral quarternary center and a pyrazole ring as critical pharmacophore elements. Compound (S)-1y showed potent and selective inhibitory activity toward human ELOVL6 while displaying potent inhibitory activity toward both mouse ELOVL3 and 6 enzymes. Compound (S)-1y showed acceptable pharmacokinetic profiles after oral dosing in mice. Furthermore, (S)-1y significantly suppressed the elongation of target fatty acids in mouse liver at 30 mg/kg oral dosing.

Collaboration


Dive into the Shigeru Tokita's collaboration.

Researchain Logo
Decentralizing Knowledge