Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeto Oda is active.

Publication


Featured researches published by Shigeto Oda.


Chemosphere | 2003

Juvenile hormone agonists affect the occurrence of male Daphnia

Norihisa Tatarazako; Shigeto Oda; Hajime Watanabe; Masatoshi Morita; Taisen Iguchi

The water flea Daphnia magna reproduces primarily by cyclic parthenogenesis. Environmental stimuli that signal a change to adverse conditions induce the organisms to switch from parthenogenesis to gamogenetic reproduction. During the gamogenetic period, they produce male daphnids and dormant resting eggs, which can survive prolonged periods of environmental adversity. However, little is known about the mechanisms associated with the switch from parthenogenesis to gamogenetic reproduction. We investigated the effects of several juvenoids on sex determination in Daphnia. Females less than 24 h old were exposed to various concentrations of the test substance and were observed for 21 days. It was found that they can trigger the appearance of male daphnids: the percentage of males in the population increases to a level greater than what occurs under ordinary environmental conditions. We found that methylfarnesoate, juvenile hormone III, methoprene, and the phenoxyphenoxy derivatives pyriproxyfen and fenoxycarb (both insecticides) reduced the production of offspring and produced sex ratios dominated by male daphnids. Pyriproxyfen and fenoxycarb showed striking effects at low concentrations. Exposure to either of these chemicals at a concentration of 330 ngl(-1) caused adult females to produce almost all male neonates. Methylfarnesoate, juvenile hormone III, and methoprene showed an effect in inducing male production at higher concentrations (3.7 x 10(3), 3.3 x 10(5), and 1.3 x 10(5) ngl(-1), respectively). Our findings suggest that juvenile hormone agonists, including some insecticides, affect the chemical signaling responsible for inducing the production of male offspring.


Journal of Endocrinology | 2007

Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna

Yasuhiko Kato; Kaoru Kobayashi; Shigeto Oda; Norihisa Tatarazako; Hajime Watanabe; Taisen Iguchi

cDNAs encoding the ecdysone receptor (EcR) and ultra spiracle (USP) protein were cloned from the water flea Daphnia magna (Crustacea: Cladocera). The deduced EcR and USP amino acid sequences showed a high degree of homology to those of other crustaceans as well as insects. We isolated three isoforms of EcR that differ in the A/B domain. Quantitative PCR analysis indicated differing temporal expression patterns of the EcR isoforms during the molting period and demonstrated that the expression of one subtype correlated well with the timing of molt. Using cDNAs encoding EcR and USP, we constructed a Daphnia EcR/USP reporter based on a two-hybrid system. The gene fusions encoded the EcR ligand-binding domain (LBD) fused to the Gal4 DNA-binding domain, and the USP-LBD fused to the Vp16 activation domain. These chimeric genes were transfected with a luciferase reporter gene. Dose-dependent activation of the reporter gene could be observed when transfectants were exposed to Ec and other chemicals known to have Ec-like activities. This two-hybrid system may represent a useful reporter system for further examination of hormonal and chemical effects on Daphnia at the molecular level.


Nature Communications | 2013

A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans

Hitoshi Miyakawa; Kenji Toyota; Ikumi Hirakawa; Yukiko Ogino; Shinichi Miyagawa; Shigeto Oda; Norihisa Tatarazako; Toru Miura; John K. Colbourne; Taisen Iguchi

Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptors responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.


Environmental Toxicology and Chemistry | 2007

Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals.

Hajime Watanabe; Eri Takahashi; Yuko Nakamura; Shigeto Oda; Norihisa Tatarazako; Taisen Iguchi

Toxic chemical contaminants have a variety of detrimental effects on various species, and the impact of pollutants on ecosystems has become an urgent issue. However, the majority of studies regarding the effects of chemical contaminants have focused on vertebrates. Among aquatic organisms, Daphnia magna has been used extensively to evaluate organism- and population-level responses of invertebrates to pollutants in acute toxicity or reproductive toxicity tests. Although these types of tests can provide information concerning hazardous concentrations of chemicals, they provide no information about their mode of action. Recent advances in molecular genetic techniques have provided tools to better understand the responses of aquatic organisms to pollutants. In the present study, we adapted some of the techniques of molecular genetics to develop new tools, which form the basis for an ecotoxicogenomic assessment of D. magna. Based on a Daphnia expressed sequence tag database, we developed an oligonucleotide-based DNA microarray with high reproducibility. The DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to several different chemicals: Copper sulfate, hydrogen peroxide, pentachlorophenol, or beta-naphthoflavone. Exposure to these chemicals resulted in characteristic patterns of gene expression that were chemical-specific, indicating that the Daphnia DNA microarray can be used for classification of toxic chemicals and for development of a mechanistic understanding of chemical toxicity on a common freshwater organism.


Genomics | 2010

Sequence divergence and expression of a transformer gene in the branchiopod crustacean, Daphnia magna

Yasuhiko Kato; Kaoru Kobayashi; Shigeto Oda; Norihisa Tatarazako; Hajime Watanabe; Taisen Iguchi

Environmental decline triggers a switch in reproductive strategy of Daphnia magna from asexual to sexual reproduction; however, the molecular basis of such environmental sex determination remains largely unknown. In insects most closely related to branchiopod crustaceans, orthologs of the Drosophila transformer gene such as dipteran transformer (tra), honeybee feminizer (fem) and complementary sex determiner (csd) function as sex determining factors. Therefore, we cloned a D. magna transformer gene (dmagtra) and analyzed its expression. The predicted amino acid sequence has 380 amino acids including an arginine-serine-rich region, which is characteristic of insect orthologs of Tra. Residues 180 to 205 are highly conserved with known Tra orthologs. The domain organization of DmagTra is distinct from known Tra orthologs; moreover, dmagtra does not display any detectable sexual dimorphic differences in expression or splicing patterns. We infer from these results that dmagtra may not be responsible for sex determination in D. magna.


Cell Biology and Toxicology | 2008

Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics

Hajime Watanabe; Kaoru Kobayashi; Yasuhiko Kato; Shigeto Oda; Ryoko Abe; Norihisa Tatarazako; Taisen Iguchi

Chemicals released into the environment have the potential to affect various species and it is important to evaluate such chemical effect on ecosystems, including aquatic organisms. Among aquatic organisms, Daphnia magna has been used extensively for acute toxicity or reproductive toxicity tests. Although these types of tests can provide information on hazardous concentrations of chemicals, they provide no information on their mode of action. Recent advances in toxicogenomics, the integration of genomics with toxicology, have the potential to afford a better understanding of the responses of aquatic organisms to pollutants. In a previous study, we developed an oligonucleotide-based DNA microarray with high reproducibility using a Daphnia expressed sequence tag (EST) database. In this study, we increased the number of genes on the array and used it for a careful ecotoxicogenomic assessment of Daphnia magna. The DNA microarray was used to evaluate gene expression profiles of neonate daphnids exposed to beta-naphthoflavone (bNF). Exposure to this chemical resulted in a characteristic gene expression pattern. As the number of the genes on an array was increased, the number of genes that were found to respond to the chemicals was also increased, which made the classification of the toxic chemicals easier and more accurate. This newly developed DNA microarray can be useful for a obtaining a better mechanistic understanding of chemical toxicity effects on a common freshwater organism.


BMC Genomics | 2013

Molecular cloning of doublesex genes of four cladocera (water flea) species

Kenji Toyota; Yasuhiko Kato; Masaru Sato; Naomi Sugiura; Shinichi Miyagawa; Hitoshi Miyakawa; Hajime Watanabe; Shigeto Oda; Yukiko Ogino; Chizue Hiruta; Takeshi Mizutani; Norihisa Tatarazako; Susanne Paland; Craig Jackson; John K. Colbourne; Taisen Iguchi

BackgroundThe gene doublesex (dsx) is known as a key factor regulating genetic sex determination in many organisms. We previously identified two dsx genes (DapmaDsx1 and DapmaDsx2) from a freshwater branchiopod crustacean, Daphnia magna, which are expressed in males but not in females. D. magna produces males by parthenogenesis in response to environmental cues (environmental sex determination) and we showed that DapmaDsx1 expression during embryonic stages is responsible for the male trait development. The D. magna dsx genes are thought to have arisen by a cladoceran-specific duplication; therefore, to investigate evolutionary conservation of sex specific expression of dsx genes and to further assess their functions in the environmental sex determination, we searched for dsx homologs in four closely related cladoceran species.ResultsWe identified homologs of both dsx genes from, D. pulex, D. galeata, and Ceriodaphnia dubia, yet only a single dsx gene was found from Moina macrocopa. The deduced amino acid sequences of all 9 dsx homologs contained the DM and oligomerization domains, which are characteristic for all arthropod DSX family members. Molecular phylogenetic analysis suggested that the dsx gene duplication likely occurred prior to the divergence of these cladoceran species, because that of the giant tiger prawn Penaeus monodon is rooted ancestrally to both DSX1 and DSX2 of cladocerans. Therefore, this result also suggested that M. macrocopa lost dsx2 gene secondarily. Furthermore, all dsx genes identified in this study showed male-biased expression levels, yet only half of the putative 5’ upstream regulatory elements are preserved in D. magna and D. pulex.ConclusionsThe all dsx genes of five cladoceran species examined had similar amino acid structure containing highly conserved DM and oligomerization domains, and exhibited sexually dimorphic expression patterns, suggesting that these genes may have similar functions for environmental sex determination in cladocerans.


Environmental Toxicology and Chemistry | 2011

Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog

Shigeto Oda; Yasuhiko Kato; Hajime Watanabe; Norihisa Tatarazako; Taisen Iguchi

Terpenoid hormones in insects (i.e., juvenile hormones) have various effects on physiology, morphology, and behavior, producing a wide range of phenotypic variation. Recent studies have shown that sex determination in cladoceran crustaceans is under the strong control of a major terpenoid hormone of crustaceans, methyl farnesoatote (MF). It can be easily conceived that MF is also a major determinant of other traits in cladocerans. In the present study, morphological changes known as antipredatory responses in a cladoceran Daphnia galeata in response to exposure to MF and a juvenile hormone-mimicking pesticide, fenoxycarb, were investigated. Morphological change was studied using neonates less than 24 h old, exposed either to MF at the concentrations from 1.9 to 30 µg/L, or fenoxycarb at the concentrations from 13 to 200 ng/L, for 6 d. Animals developed a longer helmet at 1.9 µg/L of MF and 25 ng/L of fenoxycarb, and showed a concentration-dependent elongation. However, the tail spine was reduced in size in a concentration-dependent manner. Results of the present study not only give new insight into the mechanisms of inducible defenses in cladocerans, but also provide invaluable information to understand ecological and evolutionary consequences of endocrine disruption through the shift in biological interaction between predator and prey.


Ecotoxicology and Environmental Safety | 2018

Estimation of population-level effect of the endocrine disruptor pyriproxyfen in Daphnia magna by using changes in sex ratio and reproductive output

Yoshinari Tanaka; Kensei Nakamura; Shigeto Oda; Haruna Watanabe; Norihisa Tatarazako

Here we developed an analytical means of estimating population-level effects of endocrine disruptors on Daphnia magna. Our approach was based on the fact that the endocrine-disrupting juvenile hormone analogs induce the production of male neonates if they are exposed to the analogs during a particular period in their prenatal development; the method also assumed that the abnormal production of male neonates in the sake of production of female neonates reduces population growth. We constructed a linear toxicodynamics model to elucidate the period in which D. magna neonates are sensitive to exposure to the analog and also the probability of an individual neonate changing sex under specific exposure concentrations. The proposed model was applied to D. magna reproduction test data obtained under time-varying exposure to pyriproxyfen to derive the maximum-likelihood estimates and the posterior distributions of the model parameters. To quantitatively assess the ecological risk at the population level, we conducted a population dynamics simulation under two time-varying exposure scenarios (i.e., constant or pulsed exposure) by using an age-structured population model. When the change in sex ratio was based on the time-weighted average concentration during the period of sensitivity, change in sex ratio caused approximately equivalent population-level effects as did reproductive inhibition (i.e., reduction in the total number of neonates per female parent) regardless of the exposure scenario. In contrast, when change in sex ratio was based on maximum concentration during the sensitive period, change in sex ratio caused only half the population-level effects as did reproductive inhibition under constant exposure, whereas it caused a much larger population-level effect than did reproductive inhibition under pulsed exposure.


Ecotoxicology | 2007

The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans

Norihisa Tatarazako; Shigeto Oda

Collaboration


Dive into the Shigeto Oda's collaboration.

Top Co-Authors

Avatar

Norihisa Tatarazako

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Taisen Iguchi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryoko Abe

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Haruna Watanabe

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Toyota

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge