Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigetomo Fukuhara is active.

Publication


Featured researches published by Shigetomo Fukuhara.


Molecular and Cellular Biology | 2005

Cyclic AMP Potentiates Vascular Endothelial Cadherin-Mediated Cell-Cell Contact To Enhance Endothelial Barrier Function through an Epac-Rap1 Signaling Pathway

Shigetomo Fukuhara; Atsuko Sakurai; Hideto Sano; Akiko Yamagishi; Satoshi Somekawa; Nobuyuki Takakura; Yoshihiko Saito; Kenji Kangawa; Naoki Mochizuki

ABSTRACT Cyclic AMP (cAMP) is a well-known intracellular signaling molecule improving barrier function in vascular endothelial cells. Here, we delineate a novel cAMP-triggered signal that regulates the barrier function. We found that cAMP-elevating reagents, prostacyclin and forskolin, decreased cell permeability and enhanced vascular endothelial (VE) cadherin-dependent cell adhesion. Although the decreased permeability and the increased VE-cadherin-mediated adhesion by prostacyclin and forskolin were insensitive to a specific inhibitor for cAMP-dependent protein kinase, these effects were mimicked by 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′, 5′-cyclic monophosphate, a specific activator for Epac, which is a novel cAMP-dependent guanine nucleotide exchange factor for Rap1. Thus, we investigated the effect of Rap1 on permeability and the VE-cadherin-mediated cell adhesion by expressing either constitutive active Rap1 or Rap1GAPII. Activation of Rap1 resulted in a decrease in permeability and enhancement of VE-cadherin-dependent cell adhesion, whereas inactivation of Rap1 had the counter effect. Furthermore, prostacyclin and forskolin induced cortical actin rearrangement in a Rap1-dependent manner. In conclusion, cAMP-Epac-Rap1 signaling promotes decreased cell permeability by enhancing VE-cadherin-mediated adhesion lined by the rearranged cortical actin.


Nature Cell Biology | 2008

Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1

Shigetomo Fukuhara; Keisuke Sako; Takashi Minami; Kazuomi Noda; Hak Zoo Kim; Tatsuhiko Kodama; Nobuyuki Takakura; Gou Young Koh; Naoki Mochizuki

Tie2 belongs to the receptor tyrosine kinase family and functions as a receptor for Angiopoietin-1 (Ang1). Gene-targeting analyses of either Ang1 or Tie2 in mice reveal a critical role of Ang1–Tie2 signalling in developmental vascular formation. It remains elusive how the Tie2 signalling pathway plays distinct roles in both vascular quiescence and angiogenesis. We demonstrate here that Ang1 bridges Tie2 at cell–cell contacts, resulting in trans-association of Tie2 in the presence of cell–cell contacts. In clear contrast, in isolated cells, extracellular matrix-bound Ang1 locates Tie2 at cell–substratum contacts. Furthermore, Tie2 activated at cell–cell or cell–substratum contacts leads to preferential activation of Akt and Erk, respectively. Microarray analyses and real-time PCR validation clearly show the differential gene expression profile in vascular endothelial cells upon Ang1 stimulation in the presence or absence of cell–cell contacts, implying downstream signalling is dependent upon the spatial localization of Tie2.


Cell Metabolism | 2009

Angiopoietin-like Protein 2 Promotes Chronic Adipose Tissue Inflammation and Obesity-Related Systemic Insulin Resistance

Mitsuhisa Tabata; Tsuyoshi Kadomatsu; Shigetomo Fukuhara; Keishi Miyata; Yasuhiro Ito; Motoyoshi Endo; Takashi Urano; Hui Juan Zhu; Hiroto Tsukano; Hirokazu Tazume; Koichi Kaikita; Kazuya Miyashita; Takao Iwawaki; Michio Shimabukuro; Kazuhiko Sakaguchi; Takaaki Ito; Naomi Nakagata; Tetsuya Yamada; Hideki Katagiri; Masato Kasuga; Yukio Ando; Hisao Ogawa; Naoki Mochizuki; Hiroshi Itoh; Toshio Suda; Yuichi Oike

Recent studies of obesity have provided new insights into the mechanisms underlying insulin resistance and metabolic dysregulation. Numerous efforts have been made to identify key regulators of obesity-linked adipose tissue inflammation and insulin resistance. We found that angiopoietin-like protein 2 (Angptl2) was secreted by adipose tissue and that its circulating level was closely related to adiposity, systemic insulin resistance, and inflammation in both mice and humans. Angptl2 activated an inflammatory cascade in endothelial cells via integrin signaling and induced chemotaxis of monocytes/macrophages. Constitutive Angptl2 activation in vivo induced inflammation of the vasculature characterized by abundant attachment of leukocytes to the vessel walls and increased permeability. Angptl2 deletion ameliorated adipose tissue inflammation and systemic insulin resistance in diet-induced obese mice. Conversely, Angptl2 overexpression in adipose tissue caused local inflammation and systemic insulin resistance in nonobese mice. Thus, Angptl2 is a key adipocyte-derived inflammatory mediator that links obesity to systemic insulin resistance.


Journal of Immunology | 2002

Identification of Multiple Novel Epididymis-Specific β-Defensin Isoforms in Humans and Mice

Yasuhiro Yamaguchi; Takahide Nagase; Ryosuke Makita; Shigetomo Fukuhara; Tetsuji Tomita; Takashi Tominaga; Hiroki Kurihara; Yasuyoshi Ouchi

Defensins comprise a family of cationic antimicrobial peptides that are characterized by the presence of six conserved cysteine residues. We identified two novel human β-defensin (hBD) isoforms by mining the public human genomic sequences. The predicted peptides conserve the six-cysteine motif identical with hBD-4, termed hBD-5 and hBD-6. We also evaluated the characteristics of the mouse homologs of hBD-5, hBD-6, and HE2β1, termed mouse β-defensin (mBD)-12, mBD-11, and mouse EP2e (mEP2e). The mBD-12 synthetic peptide showed salt-dependent antimicrobial activity. We demonstrate the epididymis-specific expression pattern of hBD-5, hBD-6, mBD-11, mBD-12, and mEP2e. In situ hybridization revealed mBD-11, mBD-12, and mEP2e expression in the columnar epithelium of the caput epididymis, contrasting with the predominant expression of mBD-3 in the capsule or septum of the whole epididymis. In addition, the regional specificity of mBD-11, mBD-12, and mEP2e was somewhat overlapping, but not identical, in the caput epididymis, suggesting that specific regulation may work for each member of the β-defensin family. Our findings indicated that multiple β-defensin isoforms specifically and cooperatively contribute to the innate immunity of the urogenital system.


Journal of Clinical Investigation | 2012

The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice

Shigetomo Fukuhara; Szandor Simmons; Shunsuke Kawamura; Asuka Inoue; Yasuko Orba; Takeshi Tokudome; Yuji Sunden; Yuji Arai; Kazumasa Moriwaki; Junji Ishida; Akiyoshi Uemura; Hiroshi Kiyonari; Takaya Abe; Akiyoshi Fukamizu; Masanori Hirashima; Hirofumi Sawa; Junken Aoki; Masaru Ishii; Naoki Mochizuki

The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.


Journal of Clinical Investigation | 2008

The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome

Naomasa Makita; Elijah R. Behr; Wataru Shimizu; Minoru Horie; Akihiko Sunami; Lia Crotti; Eric Schulze-Bahr; Shigetomo Fukuhara; Naoki Mochizuki; Takeru Makiyama; Hideki Itoh; Michael Christiansen; Pascal McKeown; Koji Miyamoto; Shiro Kamakura; Hiroyuki Tsutsui; Peter J. Schwartz; Alfred L. George; Dan M. Roden

Phenotypic overlap of type 3 long QT syndrome (LQT3) with Brugada syndrome (BrS) is observed in some carriers of mutations in the Na channel SCN5A. While this overlap is important for patient management, the clinical features, prevalence, and mechanisms underlying such overlap have not been fully elucidated. To investigate the basis for this overlap, we genotyped a cohort of 44 LQT3 families of multiple ethnicities from 7 referral centers and found a high prevalence of the E1784K mutation in SCN5A. Of 41 E1784K carriers, 93% had LQT3, 22% had BrS, and 39% had sinus node dysfunction. Heterologously expressed E1784K channels showed a 15.0-mV negative shift in the voltage dependence of Na channel inactivation and a 7.5-fold increase in flecainide affinity for resting-state channels, properties also seen with other LQT3 mutations associated with a mixed clinical phenotype. Furthermore, these properties were absent in Na channels harboring the T1304M mutation, which is associated with LQT3 without a mixed clinical phenotype. These results suggest that a negative shift of steady-state Na channel inactivation and enhanced tonic block by class IC drugs represent common biophysical mechanisms underlying the phenotypic overlap of LQT3 and BrS and further indicate that class IC drugs should be avoided in patients with Na channels displaying these behaviors.


EMBO Reports | 2008

Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation

Noritaka Yasuda; Shin-ichiro Miura; Hiroshi Akazawa; Toshimasa Tanaka; Yingjie Qin; Yoshihiro Kiya; Satoshi Imaizumi; Masahiro Fujino; Kaoru Ito; Yunzeng Zou; Shigetomo Fukuhara; Satoshi Kunimoto; Koichi Fukuzaki; Toshiaki Sato; Junbo Ge; Naoki Mochizuki; Haruaki Nakaya; Keijiro Saku; Issei Komuro

The angiotensin II type 1 (AT1) receptor is a G protein‐coupled receptor that has a crucial role in the development of load‐induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT1 receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand‐binding pocket. As an inverse agonist, candesartan suppressed the stretch‐induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor. A molecular model proposes that the tight binding of candesartan to the AT1 receptor stabilizes the receptor in the inactive conformation, preventing its shift to the active conformation. Our results show that the AT1 receptor undergoes a conformational switch that couples mechanical stress‐induced activation and inverse agonist‐induced inactivation.


Circulation Research | 2005

Enhanced Functional Gap Junction Neoformation by Protein Kinase A–Dependent and Epac-Dependent Signals Downstream of cAMP in Cardiac Myocytes

Satoshi Somekawa; Shigetomo Fukuhara; Yoshikazu Nakaoka; Hisakazu Fujita; Yoshihiko Saito; Naoki Mochizuki

Gap junctions (GJs) constituted by neighboring cardiac myocytes are essential for gating ions and small molecules to coordinate cardiac contractions. cAMP is suggested to be a potent stimulus for enhancement of GJ function. However, it remains elusive how cAMP potentiates the GJ of cardiomyocytes. Here we demonstrated that the gating function of GJ is enhanced by the protein kinase A (PKA)–dependent signal, and that the accumulation of connexin43 (Cx43), the most abundant Cx in myocytes, is enhanced by an exchange protein directly activated by cAMP (Epac) (Rap1 activator)–dependent signal. The gating function of GJs was analyzed by microinjected dye transfer method. The accumulation of Cx43 was analyzed by quantitative immunostaining. Using the PKA-specific activator N6-benzoyladenosine-3′,5′-cyclic monophosphate (6Bnz) and Epac-specific activator 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8CPT), we could delineate the two important downstream signals of cAMP for enhanced GJ neoformation. Whereas 6Bnz potentiated gating function of GJs with slight accumulation of Cx43 at cell–cell contacts, 8CPT remarkably enhanced the accumulation of Cx43 with a slight effect on gating. We further noticed that adherens junctions (AJs) were maturated by 8CPT, as marked by increased neural-cadherin immunostaining. Because AJ formation precedes the GJ formation, AJ formation accelerated by Epac-Rap1 signal may result in enhanced GJ formation. The involvement of Epac-Rap1 signal in GJ neoformation was further confirmed by evidence that inactivation of Rap1 by overexpression of Rap1GAP1b perturbed the accumulation of Cx43 at cell–cell contacts. Collectively, PKA and Epac cooperatively enhance functional GJ neoformation in cardiomyocytes.


Molecular Biology of the Cell | 2010

Vascular Endothelial-Cadherin Stabilizes at Cell–Cell Junctions by Anchoring to Circumferential Actin Bundles through α- and β-Catenins in Cyclic AMP-Epac-Rap1 Signal-activated Endothelial Cells

Kazuomi Noda; Jianghui Zhang; Shigetomo Fukuhara; Satoshi Kunimoto; Michihiro Yoshimura; Naoki Mochizuki

Vascular endothelial (VE)-cadherin is a cell-cell adhesion molecule involved in endothelial barrier function. Here, we show that initial circumferential actin bundling induced by cyclic AMP-Epac-Rap1 signal and its linkage to VE-cadherin through α- and β-catenins lead to the stabilization of VE-cadherin at cell-cell contacts.


Journal of Biological Chemistry | 2011

Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of β-catenin

Jianghui Zhang; Shigetomo Fukuhara; Keisuke Sako; Takato Takenouchi; Hiroshi Kitani; Tsutomu Kume; Gou Young Koh; Naoki Mochizuki

Angiopoietin-1 (Ang1) regulates both vascular quiescence and angiogenesis through the receptor tyrosine kinase Tie2. We and another group previously showed that Ang1 and Tie2 form distinct signaling complexes at cell-cell and cell-matrix contacts. We further demonstrated that the former up-regulates Notch ligand delta-like 4 (Dll4) only in the presence of cell-cell contacts. Because Dll4/Notch signal restricts sprouting angiogenesis and promotes vascular stabilization, we investigated the mechanism of how the Ang1/Tie2 signal induces Dll4 expression to clarify the role of the Dll4/Notch signal in Ang1/Tie2 signal-mediated vascular quiescence. Under confluent endothelial cells, the basal Notch signal was observed. Ang1, moreover, induced Dll4 expression and production of the Notch intracellular domain (NICD). Ang1 stimulated transcriptional activity of β-catenin through phosphoinositide 3-kinase (PI3K)/AKT-mediated phosphorylation of glycogen synthase kinase 3β (GSK3β). Correspondingly, the GSK3β inhibitor up-regulated Dll4, whereas depletion of β-catenin by siRNA blocked Ang1-induced Dll4 expression, indicating the indispensability of β-catenin in Ang1-mediated up-regulation of Dll4. In addition, Dll4 expression by the GSK3β inhibitor was only observed in confluent cells, and was impeded by DAPT, a γ-secretase inhibitor, implying requirement of the Notch signal in β-catenin-dependent Dll4 expression. Consistently, we found that either Ang1 or NICD up-regulates Dll4 through the RBP-J binding site within intron 3 of the DLL4 gene and that β-catenin forms a complex with NICD/RBP-J to enhance Dll4 expression. Ang1 induced the deposition of extracellular matrix that is preferable for basement membrane formation through Dll4/Notch signaling. Collectively, the Ang1/Tie2 signal potentiates basal Notch signal controlling vascular quiescence by up-regulating Dll4 through AKT-mediated activation of β-catenin.

Collaboration


Dive into the Shigetomo Fukuhara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuomi Noda

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge