Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeyuki Ikeda is active.

Publication


Featured researches published by Shigeyuki Ikeda.


NeuroImage | 2015

Learning a common dictionary for subject-transfer decoding with resting calibration.

Hiroshi Morioka; Atsunori Kanemura; Jun-ichiro Hirayama; Manabu Shikauchi; Takeshi Ogawa; Shigeyuki Ikeda; Motoaki Kawanabe; Shin Ishii

Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.


Human Brain Mapping | 2017

Creative females have larger white matter structures: Evidence from a large sample study

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Takamitsu Shinada; Kohei Sakaki; Yuko Sassa; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Ryuta Kawashima

The importance of brain connectivity for creativity has been theoretically suggested and empirically demonstrated. Studies have shown sex differences in creativity measured by divergent thinking (CMDT) as well as sex differences in the structural correlates of CMDT. However, the relationships between regional white matter volume (rWMV) and CMDT and associated sex differences have never been directly investigated. In addition, structural studies have shown poor replicability and inaccuracy of multiple comparisons over the whole brain. To address these issues, we used the data from a large sample of healthy young adults (776 males and 560 females; mean age: 20.8 years, SD = 0.8). We investigated the relationship between CMDT and WMV using the newest version of voxel‐based morphometry (VBM). We corrected for multiple comparisons over whole brain using the permutation‐based method, which is known to be quite accurate and robust. Significant positive correlations between rWMV and CMDT scores were observed in widespread areas below the neocortex specifically in females. These associations with CMDT were not observed in analyses of fractional anisotropy using diffusion tensor imaging. Using rigorous methods, our findings further supported the importance of brain connectivity for creativity as well as its female‐specific association. Hum Brain Mapp 38:414–430, 2017.


NeuroImage | 2017

Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Takamitsu Shinada; Kohei Sakaki; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Yuko Sassa; Ryuta Kawashima

ABSTRACT Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting‐state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole‐brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. HighlightsWe found interactions between creativity and sex on resting state imaging measures.Such effects existed in regional homogeneity in the left anterior temporal lobe.Such effects existed in functional connectivity with the medial prefrontal cortex.Such effects existed in fractional amplitude of low frequency fluctuations.Positive (negative) correlations in females (males) formed these interactions.


Scientific Reports | 2017

Global associations between regional gray matter volume and diverse complex cognitive functions: evidence from a large sample study

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Takamitsu Shinada; Kohei Sakaki; Yuko Sassa; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Ryuta Kawashima

Correlations between regional gray matter volume (rGMV) and psychometric test scores have been measured to investigate the neural bases for individual differences in complex cognitive abilities (CCAs). However, such studies have yielded different rGMV correlates of the same CCA. Based on the available evidence, we hypothesized that diverse CCAs are all positively but only weakly associated with rGMV in widespread brain areas. To test this hypothesis, we used the data from a large sample of healthy young adults [776 males and 560 females; mean age: 20.8 years, standard deviation (SD) = 0.8] and investigated associations between rGMV and scores on multiple CCA tasks (including non-verbal reasoning, verbal working memory, Stroop interference, and complex processing speed tasks involving spatial cognition and reasoning). Better performance scores on all tasks except non-verbal reasoning were associated with greater rGMV across widespread brain areas. The effect sizes of individual associations were generally low, consistent with our previous studies. The lack of strong correlations between rGMV and specific CCAs, combined with stringent corrections for multiple comparisons, may lead to different and diverse findings in the field.


Frontiers in Human Neuroscience | 2017

Steady Beat Sound Facilitates both Coordinated Group Walking and Inter-Subject Neural Synchrony

Shigeyuki Ikeda; Takayuki Nozawa; Ryoichi Yokoyama; Atsuko Miyazaki; Yukako Sasaki; Kohei Sakaki; Ryuta Kawashima

Group walking is a collective social interaction task as pedestrians are required to determine their own pace of walking on the basis of surrounding others’ states. The steady beat sound is known to be a controllable factor that contributes to relative success/failure of coordinated group walking since the beat improves pedestrian flow in congested situation. According to some reports, inter-personal interaction synchronizes inter-personal brain activity in the prefrontal region, which supports social cognitive processes required for successful inter-individual coordination, such as predicting each other’s state; success/failure of a coordinated task is associated with increase/decrease in inter-subject neural synchrony (INS). Combining these previous findings, we hypothesized that INS during group walking in congested situations would also differ depending on the existence of the steady beat, corresponding to the modulated coordination-related cognitive processes. Subjects’ frontopolar activities were measured using ultra-small near infrared spectroscopy, which can simultaneously measure the brain activities of multiple subjects without constraints on their motions. To exclude the possibility that increased INS may be spuriously induced by the shared stimuli (i.e., steady beat) or by the resultant behavioral synchronization, as control we used stepping on a same spot, which is similar in movement to walking but does not require the subjects to consider others’ states, either with or without the steady beat. In a two by two repeated measures factorial experimental design, the subjects were instructed to walk or keep stepping on a same spot with or without a steady beat sound of 70 beats per minute. As previously reported, the walking flow during group walking with the beat significantly increased compared with that without the beat. Synchronization of stepping between the subjects was also significantly increased by the steady beat sound. For INS, we observed a significant interaction effect between walking/stepping and sound/no-sound, supporting our hypothesis. INS while walking with the beat was higher than that without the beat, whereas the beat induced no significant differences in INS during stepping. Furthermore, the effect of the beat on INS while walking was spatially extended beyond the adjacent pedestrians, reflecting the diffuse nature of the collective coordination in group walking. The increase of INS for walking suggested that the steady beat sound led to more harmonized inter-personal cognitive processes, which resulted in the more coordinated group motion.


Scientific Reports | 2018

Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Takamitsu Shinada; Kohei Sakaki; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Yuko Sassa; Ryuta Kawashima

Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults.


Scientific Reports | 2018

Refractive error is associated with intracranial volume

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Takamitsu Shinada; Kohei Sakaki; Yuko Sassa; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Ryuta Kawashima

Myopia is part of the spectrum of refractive error. Myopia is associated with psychometric intelligence and, the link between brain anatomy and myopia has been hypothesized. Here we aimed to identify the associations between brain structures and refractive error in developed young adults. In a study cohort of 1,319 normal educated young adults, the refractive error showed a significant negative correlation with total intracranial volume and total cerebrospinal fluid (CSF) volume but not with total gray matter volume (GMV) or total white matter volume (WMV). Time spent studying was associated with refractive error but could not explain the aforementioned associations with brain volume parameters. The R2 values of the simple regression between spherical equivalent and outcome variables for each sex in non-whole brain imaging analyses were less than 0.05 in all cases and thus were weak. Psychometric intelligence was not associated with refractive error or total CSF volume, but it weakly positively correlated with total GMV and total WMV in this study population. Thus, refractive error appears to be primarily (weakly) associated with the volume of the cranium, whereas psychometric intelligence was associated with the volume of the brain.


Scientific Reports | 2018

Allergic tendencies are associated with larger gray matter volumes

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Yuki Yamamoto; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Kohei Sakaki; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Yuko Sassa; Ryuta Kawashima

Allergic tendencies are associated with important cognitive and physiological factors, such as intelligence and mathematical abilities. Allergies are widely prevalent, especially in modern life, and the reason for its association with important cognitive variables is an intriguing scientific question. However, despite the unique characteristics of cognitive correlates of allergy, the anatomical correlates of allergy remain unknown. The aim of this study was to identify the associations between regional gray matter volume (rGMV) and allergic tendencies in young adults. In a study cohort of 1,219 healthy, educated young adults, we identified a positive correlation between total allergic tendency and rGMV in large anatomical clusters that mainly encompassed the dorsal part of the cerebral neocortex, right anterior insula, and cerebellum. Furthermore,both mean rGMV of the entire part of these clusters and total allergenic tendency showed a significant positive correlation with spatial ability. These results suggest the link among allergic tendencies, larger rGMV, and the better spatial ability in healthy, educated young adults.


Cerebral Cortex | 2018

A common CACNA1C gene risk variant has sex-dependent effects on behavioral traits and brain functional activity

Hikaru Takeuchi; Hiroaki Tomita; Yasuyuki Taki; Yoshie Kikuchi; Chiaki Ono; Zhiqian Yu; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Kohei Sakaki; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Daniele Magistro; Yuko Sassa; Ryuta Kawashima

Genome-wide association studies have suggested that allelic variations in the CACNA1C gene confer susceptibility to schizophrenia and bipolar disorder only in women. Here we investigated the sex-specific effects of the CACNA1C variant rs1024582 on psychiatry-related traits, brain activity during tasks and rest, and brain volume in 1207 normal male and female subjects. After correcting for multiple comparisons, there were significant interaction effects between sex and the minor allele of this polymorphism on the hostile behavior subscale scores of the Coronary-Prone Type Scale mediated by higher scores in female carriers of the minor allele. Imaging analyses revealed significant interaction effects between sex and the minor allele on fractional amplitude of low-frequency fluctuations in the right dorsolateral prefrontal cortex and on brain activity during the 2-back task in areas of the right posterior cingulate cortex, right thalamus, and right hippocampus, which were all mediated by reduced activity in female carriers of the minor allele. Our results demonstrated that the rs1024582 risk variant of CACNA1C is associated with reduced activity in the frontolimbic regions at rest and during a working memory task as well as with greater hostility in females in the healthy population.


Brain Structure & Function | 2018

General intelligence is associated with working memory-related brain activity: new evidence from a large sample study

Hikaru Takeuchi; Yasuyuki Taki; Rui Nouchi; Ryoichi Yokoyama; Yuka Kotozaki; Seishu Nakagawa; Atsushi Sekiguchi; Kunio Iizuka; Sugiko Hanawa; Tsuyoshi Araki; Carlos Makoto Miyauchi; Kohei Sakaki; Yuko Sassa; Takayuki Nozawa; Shigeyuki Ikeda; Susumu Yokota; Magistro Daniele; Ryuta Kawashima

Psychometric intelligence is closely related to working memory capacity. Here we aim to determine the associations of neural activation patterns during the N-back working memory paradigm with psychometric intelligence and working memory performance. We solved the statistical problems of previous studies using (1) a large cohort of 1235 young adults and (2) robust voxel-by-voxel permutation-based statistics at the whole-brain level. Many of the significant correlations were weak, and our findings were not consistent with those of previous studies. We observed that many of the significant correlations involved brain areas in the periphery or boundaries between the task-positive network (TPN) and task-negative network (TNN), suggesting that the expansion of the TPN or TNN is associated with greater cognitive ability. Lower activity in TPN and less task-induced deactivation (TID) in TNN were associated with greater cognitive ability. These findings indicate that subjects with greater cognitive ability have a lower brain response to task demand, consistent with the notion that TID in TNN reflects cognitive demand but partly inconsistent with the prevailing neural efficiency theory. One exception was the pre-supplementary motor area, which plays a key role in cognitive control and sequential processing. In this area, intelligent subjects demonstrated greater activity related to working memory, suggesting that the pre-supplementary motor area plays a unique role in the execution of working memory tasks in intelligent subjects.

Collaboration


Dive into the Shigeyuki Ikeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge