Shigeyuki Uno
Nihon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shigeyuki Uno.
Free Radical Biology and Medicine | 2002
Albert P. Senft; Timothy P. Dalton; Daniel W. Nebert; Mary Beth Genter; Alvaro Puga; Richard J. Hutchinson; J. Kevin Kerzee; Shigeyuki Uno; Howard G. Shertzer
2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin; TCDD) is a pervasive environmental contaminant that induces hepatic and extrahepatic oxidative stress. We have previously shown that dioxin increases mitochondrial respiration-dependent reactive oxygen production. In the present study we examined the dependence of mitochondrial reactive oxygen production on the aromatic hydrocarbon receptor (AHR), cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1A2 (CYP1A2), proteins believed to be important in dioxin-induced liver toxicity. Congenic Ahr(-/-), Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, and C57BL/6J inbred mice as their Ahr/Cyp1a1/Cyp1a2(+/+) wild-type (wt) counterparts, were injected intraperitoneally with dioxin (15 microg/kg body weight) or corn-oil vehicle on 3 consecutive days. Liver mitochondria were examined 1 week following the first treatment. The level of mitochondrial H(2)O(2) production in vehicle-treated Ahr(-/-) mice was one fifth that found in vehicle-treated wt mice. Whereas dioxin caused a rise in succinate-stimulated mitochondrial H(2)O(2) production in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, this increase did not occur with the Ahr(-/-) knockout. The lack of H(2)O(2) production in Ahr(-/-) mice was not due to low levels of Mn(2+)-superoxide dismutase (SOD2) as shown by Western immunoblot analysis, nor was it due to high levels of mitochondrial glutathione peroxidase (GPX1) activity. Dioxin decreased mitochondrial aconitase (an enzyme inactivated by superoxide) by 44% in wt mice, by 26% in Cyp1a2(-/-) mice, and by 24% in Cyp1a1(-/-) mice; no change was observed in Ahr(-/-) mice. Dioxin treatment increased mitochondrial glutathione levels in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, but not in Ahr(-/-) mice. These results suggest that both constitutive and dioxin-induced mitochondrial reactive oxygen production is associated with a function of the AHR, and these effects are independent of either CYP1A1 or CYP1A2.
Journal of Lipid Research | 2008
Michiyasu Ishizawa; Manabu Matsunawa; Ryutaro Adachi; Shigeyuki Uno; Kazumasa Ikeda; Hiroyuki Masuno; Masato Shimizu; Ken-ichi Iwasaki; Sachiko Yamada; Makoto Makishima
1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], a vitamin D receptor (VDR) ligand, regulates calcium homeostasis and also exhibits noncalcemic actions on immunity and cell differentiation. In addition to disorders of bone and calcium metabolism, VDR ligands are potential therapeutic agents in the treatment of immune disorders, microbial infections, and malignancies. Hypercalcemia, the major adverse effect of vitamin D3 derivatives, limits their clinical application. The secondary bile acid lithocholic acid (LCA) is an additional physiological ligand for VDR, and its synthetic derivative, LCA acetate, is a potent VDR agonist. In this study, we found that an additional derivative, LCA propionate, is a more selective VDR activator than LCA acetate. LCA acetate and LCA propionate induced the expression of the calcium channel transient receptor potential vanilloid type 6 (TRPV6) as effectively as that of 1α,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1), whereas 1,25(OH)2D3 was more effective on TRPV6 than on CYP24A1 in intestinal cells. In vivo experiments showed that LCA acetate and LCA propionate effectively induced tissue VDR activation without causing hypercalcemia. These bile acid derivatives have the ability to function as selective VDR modulators.
Biochemical Pharmacology | 2009
Shigeyuki Uno; Kaori Endo; Yangsik Jeong; Katsuyoshi Kawana; Hiroyuki Miyachi; Yuichi Hashimoto; Makoto Makishima
The nuclear receptors liver X receptor (LXR) alpha and LXRbeta serve as oxysterol receptors and play an important role in the regulation of lipid metabolism. We investigated the potential effects of LXRs on pathways of colon carcinogenesis and found that LXR activation suppresses the transactivation activity of beta-catenin, a key molecule in Wnt signaling. LXRalpha and LXRbeta inhibited beta-catenin transactivation of T cell factor-mediated transcription in a ligand-dependent manner. LXR activation suppressed an oncogenic beta-catenin, which has phosphorylation site mutations, and did not change beta-catenin protein expression in cells. In contrast, beta-catenin enhanced LXR transactivation activity. Nuclear LXRs and beta-catenin were coimmunoprecipitated in colon cancer HCT116 cells, and in vitro experiments showed that LXRs bind directly to the Armadillo repeat region of beta-catenin in a ligand-independent manner. LXR ligand decreased mRNA expression of beta-catenin targets, MYC, MMP7 and BMP4, and recruited LXRs to MYC and MMP7 promoters. Transfection of a dominant negative LXR to HCT116 cells and experiments using LXR-null cells showed the involvement of cellular LXRs in beta-catenin suppression and proliferation inhibition. The results show lipid-sensing receptor LXRs regulate the beta-catenin activity and cellular proliferation.
Molecular Pharmacology | 2007
Yuka Inaba; Keiko Yamamoto; Nobuko Yoshimoto; Manabu Matsunawa; Shigeyuki Uno; Sachiko Yamada; Makoto Makishima
The vitamin D receptor (VDR) mediates the biological actions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, which regulates calcium homeostasis, immunity, cellular differentiation, and other physiological processes. We investigated the effects of three 1,25(OH)2D3 derivatives on VDR function. AD47 has an adamantane ring and LAC67a and LAC67b have lactone ring substituents at the side chain position. These vitamin D derivatives bind to VDR but do not stabilize an active cofactor conformation. In a VDR transfection assay, AD47 and LAC67b act as partial agonists and all three compounds inhibit VDR activation by 1,25(OH)2D3. The derivatives enhanced the heterodimerization of VDR with the retinoid X receptor, an effect unrelated to agonist/antagonist activity. AD47 and LAC67b weakly induced recruitment of the SRC-1 cofactor to VDR, and all three derivatives inhibited the recruitment of p160 family cofactors to VDR induced by 1,25(OH)2D3. It is noteworthy that AD47 induced DRIP205 recruitment as effectively as 1,25(OH)2D3, whereas LAC67a and LAC67b were not effective. We examined the expression of endogenous VDR target genes and the nuclear protein levels of VDR and cofactors in several cell lines, including cells derived from intestine, bone, and monocytes, and found that the vitamin D3 derivatives act as cell type-selective VDR modulators. The data indicate that side chain modification is useful in the development of VDR antagonists and tissue-selective modulators. Further elucidation of the molecular mechanisms of action of selective VDR modulators will be essential for their clinical application.
Toxicological Sciences | 2009
Manabu Matsunawa; Yusuke Amano; Kaori Endo; Shigeyuki Uno; Toshiyuki Sakaki; Sachiko Yamada; Makoto Makishima
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon produced by cigarette combustion, is implicated as a causative agent in smoking-related cancer and atherosclerosis. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], a potent ligand for the nuclear receptor vitamin D receptor (VDR), has been shown to decrease the risk of osteoporosis, some types of cancer and cardiovascular disease, suggesting an opposing effect of vitamin D3 to cigarette smoking. In this study, we investigated the effects of BaP on the vitamin D3 signaling pathway. BaP effectively enhanced the 1,25(OH)2D3-dependent induction of cytochrome P450 24A1 (CYP24A1) in human monocyte/macrophage-derived THP-1 cells and breast cancer MCF-7 cells. BaP combination was less or not effective on mRNA expression of CD14, arachidonate 5-lipoxygenase, and cathelicidin antimicrobial peptide in THP-1 cells. BaP also increased the expression of CYP24A1 induced by a non-vitamin D VDR ligand, lithocholic acid acetate. Another aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, enhanced CYP24A1 expression by 1,25(OH)2D3 in THP-1 cells. Treatment of cells with an AhR antagonist and a protein synthesis inhibitor inhibited the enhancing effect of BaP on CYP24A1 induction, indicating that the effects of BaP are mediated by AhR activation and de novo protein synthesis. BaP pretreatment increased 1,25(OH)2D3-dependent recruitment of VDR and retinoid X receptor to the CYP24A1 promoter. Analysis of 1,25(OH)2D3 metabolism showed that BaP enhanced the hydroxylation of 1,25(OH)2D3 by CYP24A1 in THP-1 cells. Thus, AhR activation by BaP stimulates vitamin D3 catabolism. Modulation of vitamin D signaling by AhR may represent a mechanism underlying cigarette smoking-related diseases.
Molecular Pharmacology | 2009
Hongbin Dong; Timothy P. Dalton; Marian L. Miller; Ying Chen; Shigeyuki Uno; Zhanquan Shi; Howard G. Shertzer; Seema Bansal; Narayan G. Avadhani; Daniel W. Nebert
In the past, CYP1A1 protein was known to be located in the endoplasmic reticulum (ER; microsomes). More recently, CYP1A1 was shown also to be targeted to the inner mitochondrial membrane; mitochondrial import is dependent on NH2-terminal processing that exposes a cryptic targeting signal. It is interesting that microsomal and mitochondrial CYP1A1 enzymes exhibit different substrate specificities, electron donors, and inducer properties. To understand the physiological functions of microsomal versus mitochondrial CYP1A1, we have generated three knock-in lines by altering the CYP1A1 NH2 terminus. Cyp1a1(mtt/mtt) mice encode an NH2-terminal 31-amino acid-truncated protein, deleting the ER-targeting signal and exposing the cryptic mitochondrial-targeting signal. Cyp1a1(mtp/mtp) mice encode a protein carrying L7N and L17N mutations; this mutant lacks the signal recognition particle (SRP)-binding site and subsequent ER-targeting, but requires proteolysis by a cytosolic peptidase for mitochondrial import. Cyp1a1(mc/mc) mice encode a microsomal protein having R34D and K39I mutations, which abolish the mitochondrial targeting signal. After dioxin or β-naphthoflavone treatment of these mouse lines, the CYP1A1 protein was shown to be located in the mitochondria of the Cyp1a1(mtp/mtp) and Cyp1a1(mtt/mtt) lines and in microsomes of the Cyp1a1(mc/mc) line. To test for differences in function, we compared the response to dietary benzo[a]pyrene (BaP). After 18 days of daily oral BaP, wild-type and Cyp1a1(mc/mc) mice were completely protected, whereas Cyp1a1(-/-) and Cyp1a1(mtp/mtp) mice showed striking toxicity and compensatory up-regulation of CYP1A2 and CYP1B1 mRNA in several tissues. Our data support the likelihood that it is the microsomal rather than mitochondrial CYP1A1 enzyme that protects against oral BaP toxicity.
International Journal of Cancer | 2010
Zhanquan Shi; Nadine Dragin; Marian L. Miller; Keith F. Stringer; Elisabet Johansson; Jing Chen; Shigeyuki Uno; Frank J. Gonzalez; Carlos A. Rubio; Daniel W. Nebert
Benzo[a]pyrene (BaP) is a prototypical polycyclic aromatic hydrocarbon (PAH) found in combustion processes. Cytochrome P450 1A1 and 1B1 enzymes (CYP1A1 and CYP1B1) can both detoxify PAHs and activate them to cancer‐causing reactive intermediates. Following high dosage of oral BaP (125 mg/kg/day), ablation of the mouse Cyp1a1 gene causes immunosuppression and death within ∼28 days, whereas Cyp1(+/+) wild‐type mice remain healthy for >12 months on this regimen. In this study, male Cyp1(+/+) wild‐type, Cyp1a1(−/−) and Cyp1b1(−/−) single‐knockout and Cyp1a1/1b1(−/−) double‐knockout mice received a lower dose (12.5 mg/kg/day) of oral BaP. Tissues from 16 different organs—including proximal small intestine (PSI), liver and preputial gland duct (PGD)—were evaluated; microarray cDNA expression and >30 mRNA levels were measured. Cyp1a1(−/−) mice revealed markedly increased CYP1B1 mRNA levels in the PSI, and between 8 and 12 weeks developed unique PSI adenomas and adenocarcinomas. Cyp1a1/1b1(−/−) mice showed no PSI tumors but instead developed squamous cell carcinoma of the PGD. Cyp1(+/+) and Cyp1b1(−/−) mice remained healthy with no remarkable abnormalities in any tissue examined. PSI adenocarcinomas exhibited striking upregulation of the Xist gene, suggesting epigenetic silencing of specific genes on the Y‐chromosome; the Rab30 oncogene was upregulated; the Nr0b2 tumor suppressor gene was downregulated; paradoxical overexpression of numerous immunoglobulin kappa‐ and heavy‐chain variable genes was found—although the adenocarcinoma showed no immunohistochemical evidence of being lymphatic in origin. This oral BaP mouse paradigm represents an example of “gene‐environment interactions” in which the same exposure of carcinogen results in altered target organ and tumor type, as a function of just 1 or 2 globally absent genes.
Toxicology and Applied Pharmacology | 2008
Kaori Endo; Shigeyuki Uno; Taiichiro Seki; Toyohiko Ariga; Yoshiaki Kusumi; Masako Mitsumata; Sachiko Yamada; Makoto Makishima
Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR. Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.
Neuroreport | 2000
Hideo Takahashi; Shigeyuki Uno; Yoshifumi Watanabe; Kazuo Arakawa; Shigeki Nakagawa
Nerve growth factor (NGF), which acts as a neurotrophic factor in a rat pheochromocytoma cell line (PC12), stimulated type 1 plasminogen activator inhibitor (PAI-1) mRNA expression from 1 to 5 h, after addition at 5 ng/ml. PAI-1 antigen in culture medium, which was measured using an enzyme linked immunosorbent assay (ELISA), was also increased dose dependently by the addition of NGF. Neither epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), phorbol myristate acetate (PMA) nor forskolin increased PAI-1 mRNA expression in PC12 cells. Genistein, an inhibitor of tyrosine protein kinase, completely inhibited NGF induced PAI-1 mRNA in the presence of 100 μM. Wortmannin, a potent and specific inhibitor of phosphatidylinositol 3-kinase (PI-3 kinase), decreased induction of PAI-1 mRNA level at doses of ≥ 10-7 M.
Drug Metabolism and Disposition | 2012
Manabu Matsunawa; Daisuke Akagi; Shigeyuki Uno; Kaori Endo-Umeda; Sachiko Yamada; Kazumasa Ikeda; Makoto Makishima
Benzo[a]pyrene (BaP) activates the aryl hydrocarbon (AHR) and induces the expression of genes involved in xenobiotic metabolism, including CYP1A1. CYP1A1 is involved not only in BaP detoxification but also in metabolic activation, which results in DNA adduct formation. Vitamin D receptor (VDR) belongs to the NR1I subfamily of the nuclear receptor superfamily, which also regulates expression of xenobiotic metabolism genes. We investigated the cross-talk between AHR and VDR signaling pathways and found that 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a potent physiological VDR agonist, enhanced BaP-induced transcription of CYP1A1 in human monocytic U937 cells and THP-1 cells, breast cancer cells, and kidney epithelium-derived cells. 1,25(OH)2D3 alone did not induce CYP1A1, and 1,25(OH)2D3 plus BaP did not increase CYP1A2 or CYP1B1 mRNA expression in U937 cells. The combination of 1,25(OH)2D3 and BaP increased CYP1A1 protein levels, BaP hydroxylation activity, and BaP-DNA adduct formation in U937 cells and THP-1 cells more effectively than BaP alone. The combined effect of 1,25(OH)2D3 and BaP on CYP1A1 mRNA expression in U937 cells and/or THP-1 cells was inhibited by VDR knockdown, VDR antagonists, and α-naphthoflavone, an AHR antagonist. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that VDR directly bound to an everted repeat (ER) 8 motif in the human CYP1A1 promoter. Thus, CYP1A1 is a novel VDR target gene involved in xenobiotic metabolism. Induction of CYP1A1 by the activation of VDR and AHR may contribute to BaP-mediated toxicity and the physiological function of this enzyme.