Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shih-Wei Feng is active.

Publication


Featured researches published by Shih-Wei Feng.


Applied Physics Letters | 2000

Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells

Yen-Sheng Lin; Kung-Jeng Ma; Chi-Wei Hsu; Shih-Wei Feng; Yung-Chen Cheng; Chi-Chih Liao; C. C. Yang; Chang-Cheng Chou; Chia-Ming Lee; Jen-Inn Chyi

The information on the variations of indium composition, aggregation size, and quantum-well width is crucially important for understanding the optical properties and, hence, fabricating efficient light-emitting devices. Our results showed that spinodal decomposition could occur in InGaN/GaN multiple quantum wells with indium content in the range of 15%–25% (grown with metal–organic chemical-vapor deposition). A lower nominal indium content led to a better confinement of indium-rich clusters within InGaN quantum wells. The InGaN/GaN interfaces became more diffusive, and indium-rich aggregates extended into GaN barriers with increasing indium content. It was also observed that indium-rich precipitates with diameter ranging from 5 to 12 nm preferred aggregating near V-shaped defects.


Journal of Applied Physics | 2002

Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures

Shih-Wei Feng; Yung-Chen Cheng; Yi-Yin Chung; C. C. Yang; Yen-Sheng Lin; Chen Hsu; Kung-Jeng Ma; Jen-Inn Chyi

Multiple-component decays of photoluminescence (PL) in InGaN/GaN quantum wells have been widely reported. However, their physical interpretations have not been well discussed yet. Based on wavelength-dependent and temperature-varying time-resolved PL measurements, the mechanism of carrier transport among different levels of localized states (spatially distributed) in such an indium aggregated structure was proposed for interpreting the early-stage fast decay, delayed slow rise, and extended slow decay of PL intensity. Three samples of the same quantum well geometry but different nominal indium contents, and hence different degrees of indium aggregation and carrier localization, were compared. The process of carrier transport was enhanced with a certain amount of thermal energy for overcoming potential barriers between spatially distributed potential minimums. In samples of higher indium contents, more complicated carrier localization potential structures led to enhanced carrier transport activities. Free ...


Applied Physics Letters | 2002

Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN'GaN quantum wells

Yen-Sheng Lin; Kung-Jen Ma; Cheng Hsu; Yi-Yin Chung; C. W. Liu; Shih-Wei Feng; Yung-Chen Cheng; C. C. Yang; Ming-Hua Mao; Hui-Wen Chuang; Cheng-Ta Kuo; Jian-Shihn Tsang; Thomas E. Weirich

Postgrowth thermal annealing of an InGaN/GaN quantum-well sample with a medium level of nominal indium content (19%) was conducted. From the analyses of high-resolution transmission electron microscopy and energy filter transmission electron microscopy, it was found that thermal annealing at 900 °C led to a quasiregular quantum-dot-like structure. However, such a structure was destroyed when the annealing temperature was raised to 950 °C. Temperature-dependent photoluminescence (PL) measurements showed quite consistent results. Blueshift of the PL peak position and narrowing of the PL spectral width after thermal annealing were observed.


Journal of Applied Physics | 2010

Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells

Shih-Wei Feng; Chih-Ming Lai; Chien-Hsun Chen; Wen-Ching Sun; Li-Wei Tu

In this study, we conducted numerical simulations with the consideration of microelectronic and photonic structures to determine the feasibility of and to design the device structure for the optimized performance of InGaN p-i-n single homojunction solar cells. Operation mechanisms of InGaN p-i-n single homojunction solar cells were explored through the calculation of the characteristic parameters such as the absorption, collection efficiency (χ), open circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF). Simulation results show that the characteristic parameters of InGaN solar cells strongly depend on the indium content, thickness, and defect density of the i-layer. As the indium content in the cell increases, Jsc and absorption increase while χ, Voc, and FF decrease. The combined effects of the absorption, χ, Voc, Jsc, and FF lead to a higher conversion efficiency in the high-indium-content solar cell. A high-quality In0.75Ga0.25N solar cell with a 4 μm i-layer thickness can exhibit as high a conversion efficiency as ∼23%. In addition, the similar trend of conversion efficiency to that of Jsc shows that Jsc is a dominant factor to determine the performance of p-i-n InGaN solar cells. Furthermore, compared with the previous simulation results without the consideration of defect density, the lower calculated conversion efficiency verifies that the sample quality has a great effect on the performance of a solar cell and a high-quality InGaN alloy is necessary for the device fabrication. Simulation results help us to better understand the electro-optical characteristics of InGaN solar cells and can be utilized for efficiency enhancement through optimization of the device structure.In this study, we conducted numerical simulations with the consideration of microelectronic and photonic structures to determine the feasibility of and to design the device structure for the optimized performance of InGaN p-i-n single homojunction solar cells. Operation mechanisms of InGaN p-i-n single homojunction solar cells were explored through the calculation of the characteristic parameters such as the absorption, collection efficiency (χ), open circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF). Simulation results show that the characteristic parameters of InGaN solar cells strongly depend on the indium content, thickness, and defect density of the i-layer. As the indium content in the cell increases, Jsc and absorption increase while χ, Voc, and FF decrease. The combined effects of the absorption, χ, Voc, Jsc, and FF lead to a higher conversion efficiency in the high-indium-content solar cell. A high-quality In0.75Ga0.25N solar cell with a 4 μm i-layer thickness can e...


Applied Physics Letters | 2002

Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures

Shih-Wei Feng; Yung-Chen Cheng; Yi-Yin Chung; C. C. Yang; Ming-Hua Mao; Yen-Sheng Lin; Kung-Jeng Ma; Jen-Inn Chyi

Based on wavelength-dependent and temperature-varying time-resolved photoluminescence (PL) measurements, the mechanism of carrier transport among different levels of localized states (spatially distributed) in an InGaN/GaN quantum well structure was proposed for interpreting the early-stage fast decay, delayed slow rise, and extended slow decay of PL intensity. The process of carrier transport was enhanced with a certain amount of thermal energy for overcoming potential barriers between spatially distributed potential minimums. With carrier supply in the carrier transport process, the extended PL decay time at wavelengths corresponding to deeply localized states can be as large as 80 ns.


Journal of Applied Physics | 2004

Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing

Shih-Wei Feng; Tsung-Yi Tang; Yen-Cheng Lu; Shi-Jiun Liu; En-Chiang Lin; C. C. Yang; Kung-Jen Ma; Ching Hsing Shen; L. C. Chen; K. H. Kim; J. Y. Lin; H. X. Jiang

We study thermal annealing effects on the size and composition variations of indium-aggregated clusters in two InGaN thin films with photoluminescence (PL) in the yellow and red ranges. The methods of investigation include optical measurement, nanoscale material analysis, and theoretical calculation. Such a study is important for determining the relation between the band gap and the average indium content of InGaN. In one of the samples, the major part of the PL spectrum is shifted from the yellow band into the blue range upon thermal annealing. In the other sample, after thermal annealing, a broad spectrum covering the whole visible range is observed. Cathodo-luminescence (CL) spectra show that the spectral changes occur essentially in the photons emitted from the shallow layers of the InGaN films. Photon emission spectra from the deeper layers are essentially unaffected by thermal annealing. The spectral changes upon thermal annealing are mainly attributed to the general trend of cluster size reduction....


Journal of Applied Physics | 2003

Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells

Yi-Yin Chung; Yen-Sheng Lin; Shih-Wei Feng; Yung-Chen Cheng; En-Chiang Lin; C. C. Yang; Kung-Jen Ma; Cheng Hsu; Hui-Wen Chuang; Cheng-Ta Kuo; Jian-Shihn Tsang

Optical measurements of temperature-dependent photoluminescence (PL) spectral peak, integrated PL intensity and PL decay time, and microstructure analyses with high-resolution transmission electron microscopy showed the strong dependencies of thermal annealing effects on quantum well (QW) width in InGaN/GaN QW structures. With different QW widths, different levels of strain energy were built. Upon thermal annealing, energy relaxation resulted in the reshaping of quantum dots and hence the changes of optical properties. Thermal annealing at 800 °C of a narrow QW width (2 nm) structure led to regularly distributed quantum dots (QDs) and improved optical quality. However, thermal annealing at the same temperature of a sample of larger QW width (4 nm) did not show QD formation. In this situation, even higher local strains around QWs were speculated. Also, degraded optical quality was observed.


Applied Physics Letters | 2003

Thermal annealing effects on an InGaN film with an average indium mole fraction of 0.31

Shih-Wei Feng; En-Chiang Lin; Tsung-Yi Tang; Yung-Chen Cheng; Hsiang-Chen Wang; C. C. Yang; Kung-Jen Ma; Ching-Hsing Shen; Li-Chyong Chen; K. H. Kim; J. Y. Lin; H. X. Jiang

We compared the optical and material properties of an InGaN thin film with an average indium content at 0.31 between as-grown and postgrowth thermally annealed conditions. The major part of the photoluminescence spectrum was shifted from the original yellow band into the blue range upon thermal annealing. Cathodoluminescence (CL) spectra showed that the spectral shift occurred essentially in a shallow layer of the InGaN film. The deeper layer in the as-grown sample contributed blue emission because it had been thermally annealed during the growth of the shallow layer. The spectral change was attributed to the general trends of cluster size reduction and possibly quantum-confined Stark effect relaxation upon thermal annealing. The attribution was supported by the observations in the CL, x-ray diffraction, and high-resolution transmission electron microscopy results.


Optical Materials Express | 2013

Synthesis of CIGS thin film by solvothermal route

Hsiang-Chen Wang; Chao-Chi Wang; Shih-Wei Feng; Li-His Chen; Yen-Sheng Lin

This study presents the synthesis of copper indium gallium (di)selenide (CIGS) films by a solvothermal method. Four factors in CIGS synthesis are considered: In/Ga ratios, hydrogen contents during thermal annealing, thermal annealing temperatures, and annealing times. Experimental results show that the optimal parameters for CIGS film synthesis are the following: proportion of Cu:In:Ga:Se = 1:0.7:0.3:2; hydrogen content during thermal annealing, 5%; thermal annealing temperature, 600 °C; and annealing time, 100 min. The largest crystal grain size of a CIGS film synthesized using these optimal parameters is about 100 nm. The crystal grain size is also found to be inversely proportional to sheet resistance. This relationship holds true because a smaller crystal indicates more grain boundaries and defects. Thus, an electron encounters more barriers in the transmission process, and electric conductivity decreases.


Optical Materials Express | 2013

Modeling of InGaN p-n junction solar cells

Shih-Wei Feng; Chih-Ming Lai; Chin-Yi Tsai; Yu-Ru Su; Li-Wei Tu

InGaN p-n junction solar cells with various indium composition and thickness of upper p-InGaN and lower n-InGaN junctions are investigated theoretically. The physical properties of InGaN p-n junction solar cells, such as the short circuit current density (JSC), open circuit voltage (Voc), fill factor (FF), and conversion efficiency (η), are theoretically calculated and simulated by varying the device structures, position of the depletion region, indium content, and photon penetration depth. The results indicate that an In0.6Ga0.4N solar cell, with optimal device parameters, can have a JSC ~31.8 mA/cm2, Voc ~0.874 volt, FF ~0.775, and η ~21.5%. It clearly demonstrates that medium-indium-content InGaN materials have the potential to realize high efficiency solar cells. Furthermore, the simulation results, with various thicknesses of the p-InGaN junction but a fixed thickness of the n-InGaN junction, shows that the performance of InGaN solar cells is determined by the upper p-InGaN junction rather than the n-InGaN substrate. This is attributed to the different amount of light absorption in the depletion region and the variation of the collection efficiency of minority carriers.

Collaboration


Dive into the Shih-Wei Feng's collaboration.

Top Co-Authors

Avatar

C. C. Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yung-Chen Cheng

National University of Tainan

View shared research outputs
Top Co-Authors

Avatar

Hsiang-Chen Wang

National Chung Cheng University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jen-Inn Chyi

National Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Yin Chung

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

En-Chiang Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Li-Wei Tu

National Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge