Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shijun Sung is active.

Publication


Featured researches published by Shijun Sung.


IEEE Transactions on Terahertz Science and Technology | 2015

THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results

Zachary D. Taylor; James Garritano; Shijun Sung; Neha Bajwa; David B. Bennett; Bryan Nowroozi; Priyamvada Tewari; James Sayre; Jean-Pierre Hubschman; Sophie X. Deng; E. R. Brown; Warren S. Grundfest

A pulsed terahertz (THz) imaging system and millimeter-wave reflectometer were used to acquire images and point measurements, respectively, of five rabbit cornea in vivo. These imaging results are the first ever produced of in vivo cornea. A modified version of a standard protocol using a gentle stream of air and a Mylar window was employed to slightly dehydrate healthy cornea. The sensor data and companion central corneal thickness (CCT) measurements were acquired every 10-15 min over the course of two hours using ultrasound pachymmetry.. Statistically significant positive correlations were established between CCT measurements and millimeter wave reflectivity. Local shifts in reflectivity contrast were observed in the THz imagery; however, the THz reflectivity did not display a significant correlation with thickness in the region probed by the 100 GHz and CCT measurements. This is explained in part by a thickness sensitivity at least 10 × higher in the mm-wave than the THz systems. Stratified media and effective media modeling suggest that the protocol perturbed the thickness and not the corneal tissue water content (CTWC). To further explore possible etalon effects, an additional rabbit was euthanized and millimeter wave measurements were obtained during death induced edema. These observations represent the first time that the uncoupled sensing of CTWC and CCT have been achieved in vivo.


IEEE Transactions on Terahertz Science and Technology | 2015

THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis

Zachary D. Taylor; James Garritano; Shijun Sung; Neha Bajwa; David B. Bennett; Bryan Nowroozi; Priyamvada Tewari; James Sayre; Jean-Pierre Hubschman; Sophie X. Deng; E. R. Brown; Warren S. Grundfest

Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging.


Proceedings of SPIE | 2013

Active THz medical imaging using broadband direct detection

Zachary D. Taylor; James Garritano; Priyamvada Tewari; Eric D. Diebold; Shijun Sung; Neha Bajwa; Bryan Nowroozi; Alexander Stojadinovic; Nuria Llombart; E. R. Brown; Warren S. Grundfest

Research in THz imaging is generally focused on three primary application areas: medical, security, and nondestructive evaluation (NDE). While work in THz security imaging and personnel screening is populated by a number of different active and passive system architectures, research in medical imaging in is generally performed with THz time-domain systems. These systems typically employ photoconductive or electro-optic source/detector pairs and can acquire depth resolved data or spectrally resolved pixels by synchronously sampling the electric field of the transmitted/reflected waveform. While time-domain is a very powerful scientific technique, results reported in the literature suggest that desired THz contrast in medical imaging may not require the volume of data accessible from time-resolved measurements and that a simpler direct detection, active technique may be sufficient for specific applications. In this talk we discuss an active direct detection reflectometer system architecture operating at a center frequency of ~ 525 GHz that uses a photoconductive source and schottky diode detector. This design takes advantage or radar-like pulse rectification and novel reflective optical design to achieve high target imaging contrast with significant potential for high speed acquisition time. Results in spatially resolved hydration mapping of burn wounds are presented and future outlooks discussed.


Proceedings of SPIE | 2014

THz imaging studies of painted samples to guide cultural heritage investigations at the Enkleistra of St. Neophytos inPaphos, Cyprus

Roxanne Radpour; Neha Bajwa; James Garritano; Shijun Sung; Magdalena Balonis-Sant; Priyamvada Tewari; Warren S. Grundfest; Ioanna Kakoulli; Zachary D. Taylor

Terahertz (THz) imaging is a relatively new non-destructive analytical technique that is transitioning from established application research areas such as defense and biomedicine to studies of cultural heritage artifacts. Our research adopts a THz medical imaging system, originally designed for in vivo tissue hydration sensing, to acquire high contrast imagery of painted plaster samples in order to assess the ability of the system to image the Byzantine wall paintings at the Enkleistra of St. Neophytos in Paphos, Cyprus. The original 12th century paintings show evidence of later painting phases overlapping earlier iconography. A thin layer of lead white (2PbCO3·Pb(OH)2) underlies, in parts, later wall paintings, concealing the original painting scheme beneath. Traditional imaging modalities have been unable to image the underlying iconography due to a combination of absorption and scattering. We aim to use THz imaging and novel optical design to probe beyond the visible surface and perform in situ analysis of iconography beneath the lead white layer. Imaging results of painted plaster mock-ups covered with a thin layer of lead white and/or chalk, as well as of a painted wooden panel with obscured writing, are presented, and from these images sufficient contrast for feature identification is demonstrated. Preliminary results from the analysis of these mock-ups confirmed the utility of this technique and its potential to image concealed original paintings in the Enkleistra of St. Neophytos. The results encourage analysis of THz scattering within paint and plaster materials to further improve spatial resolution and penetration depth in THz imaging systems.


Proceedings of SPIE | 2012

Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

Neha Bajwa; Bryan Nowroozi; Shijun Sung; James Garritano; Ashkan Maccabi; Priyamvada Tewari; Martin O. Culjat; Rahul S. Singh; Jeffry R. Alger; Warren S. Grundfest; Zachary D. Taylor

Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.


Proceedings of SPIE | 2012

Advances in biomedical imaging using THz technology with applications to burn-wound assessment

Priyamvada Tewari; Colin Kealey; Shijun Sung; Ashkan Maccabi; Neha Bajwa; Rahul S. Singh; Martin O. Culjat; Alexander Stojadinovic; Warren S. Grundfest; Zachary D. Taylor

Terahertz (THz) hydration sensing and image has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of applications where current hydration sensing techniques are insufficient. THz medical imaging is an expanding field of research and tissue hydration plays a key role in the contrast observed in THz tissue reflectance and absorbance maps. This paper outlines the most recent results in burn and corneal imaging where hydration maps were used to assess tissue status. A 3 day study was carried out in rat models where a THz imaging system was used to assess the severity and extent of burn throughout the first day of injury and at the 24, 48, and 72 hour time points. Marked difference in tissue reflectance were observed between the partial and full thickness burns and image features were identified that may be used as diagnostic markers for burn severity. Companion histological analysis performed on tissue excised on Day 3 confirms hypothesized burn severity. The results of these preliminary animal trials suggest that THz imaging may be useful in burn wound assessment where current clinical modalities have resolution and/or sensitivity insufficient for accurate diagnostics.


Journal of Laboratory Automation | 2017

Polypeptide-Based Gold Nanoshells for Photothermal Therapy

Kristine M. Mayle; Kathryn R. Dern; Vincent K. Wong; Shijun Sung; Ke Ding; April R. Rodriguez; Zachary D. Taylor; Z. Hong Zhou; Warren S. Grundfest; Timothy J. Deming; Daniel T. Kamei

Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine)60-block-poly(L-leucine)20 (K60L20) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K60L20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.


Journal of Laboratory Automation | 2017

Engineering A11 Minibody-Conjugated, Polypeptide-Based Gold Nanoshells for Prostate Stem Cell Antigen (PSCA)-Targeted Photothermal Therapy.

Kristine M. Mayle; Kathryn R. Dern; Vincent K. Wong; Kevin Y. Chen; Shijun Sung; Ke Ding; April R. Rodriguez; Scott Knowles; Zachary D. Taylor; Z. Hong Zhou; Warren S. Grundfest; Anna M. Wu; Timothy J. Deming; Daniel T. Kamei

Currently, there is no curative treatment for advanced metastatic prostate cancer, and options, such as chemotherapy, are often nonspecific, harming healthy cells and resulting in severe side effects. Attaching targeting ligands to agents used in anticancer therapies has been shown to improve efficacy and reduce nonspecific toxicity. Furthermore, the use of triggered therapies can enable spatial and temporal control over the treatment. Here, we combined an engineered prostate cancer–specific targeting ligand, the A11 minibody, with a novel photothermal therapy agent, polypeptide-based gold nanoshells, which generate heat in response to near-infrared light. We show that the A11 minibody strongly binds to the prostate stem cell antigen that is overexpressed on the surface of metastatic prostate cancer cells. Compared to nonconjugated gold nanoshells, our A11 minibody-conjugated gold nanoshell exhibited significant laser-induced, localized killing of prostate cancer cells in vitro. In addition, we improved upon a comprehensive heat transfer mathematical model that was previously developed by our laboratory. By relaxing some of the assumptions of our earlier model, we were able to generate more accurate predictions for this particular study. Our experimental and theoretical results demonstrate the potential of our novel minibody-conjugated gold nanoshells for metastatic prostate cancer therapy.


Review of Scientific Instruments | 2016

An examination of the elastic properties of tissue-mimicking phantoms using vibro-acoustography and a muscle motor system

Ashkan Maccabi; Zachary D. Taylor; Neha Bajwa; J. Mallen-St. Clair; M. St. John; Shijun Sung; Warren S. Grundfest; George N. Saddik

Tissue hardness, often quantified in terms of elasticity, is an important differentiating criterion for pathological identity and is extensively used by surgeons for tumor localization. Delineation of malignant regions from benign regions is typically performed by visual inspection and palpation. Although practical, this method is highly subjective and does not provide quantitative metrics. We have previously reported on Vibro-Acoustography (VA) for tumor delineation. VA is unique in that it uses the specific, non-linear properties of tumor tissue in response to an amplitude modulated ultrasound beam to generate spatially resolved, high contrast maps of tissue. Although the lateral and axial resolutions (sub-millimeter and sub-centimeter, respectively) of VA have been extensively characterized, the relationship between static stiffness assessment (palpation) and dynamic stiffness characterization (VA) has not been explicitly established. Here we perform a correlative exploration of the static and dynamic properties of tissue-mimicking phantoms, specifically elasticity, using VA and a muscle motor system. Muscle motor systems, commonly used to probe the mechanical properties of materials, provide absolute, quantitative point measurements of the elastic modulus, analogous to Youngs modulus, of a target. For phantoms of varying percent-by-weight concentrations, parallel VA and muscle motor studies conducted on 18 phantoms reveal a negative correlation (p < - 0.85) between mean signal amplitude levels observed with VA and calculated elastic modulus values from force vs. indentation depth curves. Comparison of these elasticity measurements may provide additional information to improve tissue modeling, system characterization, as well as offer valuable insights for in vivo applications, specifically surgical extirpation of tumors.


Biomedical Optics Express | 2017

Non-invasive terahertz imaging of tissue water content for flap viability assessment.

Neha Bajwa; Joshua Au; Reza Jarrahy; Shijun Sung; Michael C. Fishbein; David Riopelle; Daniel B. Ennis; Tara Aghaloo; Maie A. St. John; Warren S. Grundfest; Zachary D. Taylor

Accurate and early prediction of tissue viability is the most significant determinant of tissue flap survival in reconstructive surgery. Perturbation in tissue water content (TWC) is a generic component of the tissue response to such surgeries, and, therefore, may be an important diagnostic target for assessing the extent of flap viability in vivo. We have previously shown that reflective terahertz (THz) imaging, a non-ionizing technique, can generate spatially resolved maps of TWC in superficial soft tissues, such as cornea and wounds, on the order of minutes. Herein, we report the first in vivo pilot study to investigate the utility of reflective THz TWC imaging for early assessment of skin flap viability. We obtained longitudinal visible and reflective THz imagery comparing 3 bipedicled flaps (i.e. survival model) and 3 fully excised flaps (i.e. failure model) in the dorsal skin of rats over a postoperative period of 7 days. While visual differences between both models manifested 48 hr after surgery, statistically significant (p < 0.05, independent t-test) local differences in TWC contrast were evident in THz flap image sets as early as 24 hr. Excised flaps, histologically confirmed as necrotic, demonstrated a significant, yet localized, reduction in TWC in the flap region compared to non-traumatized skin. In contrast, bipedicled flaps, histologically verified as viable, displayed mostly uniform, unperturbed TWC across the flap tissue. These results indicate the practical potential of THz TWC sensing to accurately predict flap failure 24 hours earlier than clinical examination.

Collaboration


Dive into the Shijun Sung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neha Bajwa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Nowroozi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie X. Deng

University of California

View shared research outputs
Top Co-Authors

Avatar

Ashkan Maccabi

University of California

View shared research outputs
Top Co-Authors

Avatar

E. R. Brown

Wright State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge