Shilai Bao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shilai Bao.
The EMBO Journal | 2007
Xin Wang; Ya Zhang; Qibin Ma; Zhaoliang Zhang; Yongbiao Xue; Shilai Bao; Kang Chong
Plant flowering is a crucial developmental transition from the vegetative to reproductive phase and is properly timed by a number of intrinsic and environmental cues. Genetic studies have identified that chromatin modification influences the expression of FLOWERING LOCUS C (FLC), a MADS‐box transcription factor that controls flowering time. Histone deacetylation and methylation at H3K9 and H3K27 are associated with repression of FLC; in contrast, methylation at H3K4 and H3K36 activates FLC expression. However, little is known about the functions of histone arginine methylation in plants. Here, we report that Arabidopsis Shk1 binding protein 1 (SKB1) catalyzes histone H4R3 symmetric dimethylation (H4R3sme2). SKB1 lesion results in upregulation of FLC and late flowering under both long and short days, but late flowering is reversed by vernalization and gibberellin treatments. An skb1‐1flc‐3 double mutant blocks late‐flowering phenotype, which suggests that SKB1 promotes flowering by suppressing FLC transcription. SKB1 binds to the FLC promoter, and disruption of SKB1 results in reduced H4R3sme2, especially in the promoter of FLC chromatin. Thus, SKB1‐mediated H4R3sme2 is a novel histone mark required for repression of FLC expression and flowering time control.
The Plant Cell | 2011
Zhaoliang Zhang; Shupei Zhang; Ya Zhang; Xin Wang; Dan Li; Qiuling Li; Minghui Yue; Qun Li; Yue Zhang; Yunyuan Xu; Yongbiao Xue; Kang Chong; Shilai Bao
This study examines how histone modification confers salt stress in Arabidopsis. The floral initiator SKB1 is found to mediate the plant’s response to salt stress by altering the methylation status of histone H4R3 and of the small nuclear ribonucleoprotein Sm-like4 (LSM4), thereby affecting the expression of stress-responsive genes. Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant’s response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R3) symmetric dimethylation (H4R3sme2) integrate responses to plant developmental progress and salt stress. Mutation of SKB1 results in salt hypersensitivity, late flowering, and growth retardation. SKB1 associates with chromatin and thereby increases the H4R3sme2 level to suppress the transcription of FLOWERING LOCUS C (FLC) and a number of stress-responsive genes. During salt stress, the H4R3sme2 level is reduced, as a consequence of SKB1 disassociating from chromatin to induce the expression of FLC and the stress-responsive genes but increasing the methylation of small nuclear ribonucleoprotein Sm-like4 (LSM4). Splicing defects are observed in the skb1 and lsm4 mutants, which are sensitive to salt. We propose that SKB1 mediates plant development and the salt response by altering the methylation status of H4R3sme2 and LSM4 and linking transcription to pre-mRNA splicing.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Litao Sun; Mingzhu Wang; Zongyang Lv; Na Yang; Yingfang Liu; Shilai Bao; Weimin Gong; Rui-Ming Xu
Symmetric and asymmetric dimethylation of arginine are isomeric protein posttranslational modifications with distinct biological effects, evidenced by the methylation of arginine 3 of histone H4 (H4R3): symmetric dimethylation of H4R3 leads to repression of gene expression, while asymmetric dimethylation of H4R3 is associated with gene activation. The enzymes catalyzing these modifications share identifiable sequence similarities, but the relationship between their catalytic mechanisms is unknown. Here we analyzed the structure of a prototypic symmetric arginine dimethylase, PRMT5, and discovered that a conserved phenylalanine in the active site is critical for specifying symmetric addition of methyl groups. Changing it to a methionine significantly elevates the overall methylase activity, but also converts PRMT5 to an enzyme that catalyzes both symmetric and asymmetric dimethylation of arginine. Our results demonstrate a common catalytic mechanism intrinsic to both symmetric and asymmetric arginine dimethylases, and show that steric constrains in the active sites play an essential role in determining the product specificity of arginine methylases. This discovery also implies a potentially regulatable outcome of arginine dimethylation that may provide versatile control of eukaryotic gene expression.
Plant Physiology | 2005
Xin Wang; Yunyuan Xu; Ye Han; Shilai Bao; Jizhou Du; Ming Yuan; Zhihong Xu; Kang Chong
Ran is an evolutionarily conserved eukaryotic GTPase. We previously identified a cDNA of TaRAN1, a novel Ran GTPase homologous gene in wheat (Triticum aestivum) and demonstrated that TaRAN1 is associated with regulation of genome integrity and cell division in yeast (Saccharomyces cerevisiae) systems. However, much less is known about the function of RAN in plant development. To analyze the possible biological roles of Ran GTPase, we overexpressed TaRAN1 in transgenic Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). TaRAN1 overexpression increased the proportion of cells in the G2 phase of the cell cycle, which resulted in an elevated mitotic index and prolonged life cycle. Furthermore, it led to increased primordial tissue, reduced number of lateral roots, and stimulated hypersensitivity to exogenous auxin. The results suggest that Ran protein was involved in the regulation of mitotic progress, either in the shoot apical meristem or the root meristem zone in plants, where auxin signaling is involved. This article determines the function of RAN in plant development mediated by the cell cycle and its novel role in meristem initiation mediated by auxin signaling.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Yingjun Jiang; Xin Wang; Shilai Bao; Ruifeng Guo; David G. Johnson; Xuetong Shen; Lei Li
The creation of accessible DNA in the context of chromatin is a key step in many DNA functions. To reveal how ATP-dependent chromatin remodeling activities impact DNA repair, we constructed mammalian genetic models for the INO80 chromatin remodeling complex and investigated the impact of loss of INO80 function on the repair of UV-induced photo lesions. We showed that deletion of two core components of the INO80 complex, INO80 and ARP5, significantly hampered cellular removal of UV-induced photo lesions but had no significant impact on the transcription of nucleotide excision repair (NER) factors. Loss of INO80 abolished the assembly of NER factors, suggesting that prior chromatin relaxation is important for the NER incision process. Ino80 and Arp5 are enriched to UV-damaged DNA in an NER-incision-independent fashion, suggesting that recruitment of the remodeling activity likely takes place during the initial stage of damage recognition. These results demonstrate a critical role of INO80 in creating DNA accessibility for the NER pathway and provide direct evidence that repair of UV lesions and perhaps most bulky adduct lesions requires chromatin reconfiguration.
Journal of Biological Chemistry | 2010
Jinqi Ren; Yaqing Wang; Yuheng Liang; Yongqing Zhang; Shilai Bao; Zhiheng Xu
Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg158 and Arg160 residues. The methylation of RPS10 at Arg158 and Arg160 plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.
Oncogene | 2004
Shilai Bao; Tao Lu; Xin A Wang; Huyong Zheng; Li E. Wang; Qingyi Wei; Walter N. Hittelman; Lei Li
The checkpoint sliding-clamp complex, Rad9/Rad1/Hus1, plays a critical role during initiation of checkpoint signals in response to DNA damage and replication disruption. We investigated the impact of loss of Rad1 on checkpoint function and on DNA replication in mammalian cells. We show that RAD1 is an essential gene for sustained cell proliferation and that loss of Rad1 causes destabilization of Rad9 and Hus1 and consequently disintegration of the sliding-clamp complex. In Rad1-depleted cells, Atr-dependent Chk1 activation was impaired whereas Atm-mediated Chk2 activation was unaffected, suggesting that the sliding clamp is required primarily in Atr-dependent signal activation. Disruption of sliding-clamp function also caused a major defect in S-phase control. Rad1-depleted cells exhibited an RDS phenotype, indicating that damage-induced S-phase arrest was compromised by Rad1 loss. Furthermore, lack of Rad1 also affected the efficiency of replication recovery from DNA synthesis blockage, resulting in a prolonged S phase. These deficiencies may perpetually generate DNA strand breakage as we have found chromosomal abnormalities in Rad1-depleted cells. We conclude that the Rad9/Rad1/Hus1 complex is essential for Atr-dependent checkpoint signaling, which may play critical roles in the facilitation of DNA replication and in the maintenance of genomic integrity.
Cell Research | 2010
Zhongwei Zhou; Xiaotian Sun; Zhenhua Zou; Litao Sun; Tao Zhang; Shaoshi Guo; Ya Wen; Lin Liu; Yi Wang; Jun Qin; Lei Li; Weimin Gong; Shilai Bao
Maintenance of the Golgi apparatus (GA) structure and function depends on Golgi matrix proteins. The posttranslational modification of Golgi proteins such as phosphorylation of members of the golgin and GRASP families is important for determining Golgi architecture. Some Golgi proteins including golgin-84 are also known to be methylated, but the function of golgin methylation remains unclear. Here, we show that the protein arginine methyltransferase 5 (PRMT5) localizes to the GA and forms complexes with several components involved in GA ribbon formation and vesicle tethering. PRMT5 interacts with the golgin GM130, and depletion of PRMT5 causes defects in Golgi ribbon formation. Furthermore, PRMT5 methylates N-terminal arginines in GM130, and such arginine methylation appears critical for GA ribbon formation. Our findings reveal a molecular mechanism by which PRMT5-dependent arginine methylation of GM130 controls the maintenance of GA architecture.
The International Journal of Biochemistry & Cell Biology | 2009
Rujuan Liu; Anna-Lena Ström; Jianjun Zhai; Jozsef Gal; Shilai Bao; Weimin Gong; Haining Zhu
Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H(2)O(2) induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H(2)O(2) treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.
Blood | 2009
Zhigang Li; Wei Zhang; Minyuan Wu; Shanshan Zhu; Chao Gao; Lin Sun; Ruidong Zhang; Nan Qiao; Huiling Xue; Yamei Hu; Shilai Bao; Huyong Zheng; Jing-Dong J. Han
Pediatric acute lymphoblastic leukemia (ALL) contains cytogenetically distinct subtypes that respond differently to cytotoxic drugs. Subtype classification can be also achieved through gene expression profiling. However, how to apply such classifiers to a single patient and correctly diagnose the disease subtype in an independent patient group has not been addressed. Furthermore, the underlying regulatory mechanisms responsible for the subtype-specific gene expression patterns are still largely unknown. Here, by combining 3 published microarray datasets on 535 mostly white childrens samples and generating a new dataset on 100 Chinese childrens ALL samples, we were able to (1) identify a 62-gene classifier with 97.6% accuracy from the white childrens samples and validated it on the completely independent set of 100 Chinese samples, and (2) uncover potential regulatory networks of ALL subtypes. The classifier we identified was, thus far, the only one that could be applied directly to a single sample and that sustained validation in a large independent patient group. Our results also suggest that the etiology of ALL is largely the same among different ethnic groups, and that the transcription factor hubs in the predicted regulatory network might play important roles in regulating gene expression and development of ALL.