Shiliang Yang
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shiliang Yang.
Physical Review E | 2017
Liangqi Zhang; Shiliang Yang; Zhong Zeng; Jie Chen; Linmao Yin; Jia Wei Chew
Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.
Physics of Fluids | 2017
Shiliang Yang; Yuhao Sun; Liangqi Zhang; Jia Wei Chew
Granular materials are ubiquitous in our daily life and inherent in multitudinous industrial processes. Differences in the granular properties such as size and density inevitably induce segregation. By means of the discrete element method, a binary-size mixture in a three-dimensional rotating drum is numerically simulated to explore the segregation dynamics of the granular material along the axial direction. Snapshots of the distribution of the two particle types in the rotating drum are presented with respect to time to illustrate the spatial evolution of the size-induced segregation structure. The space-time plots of various axial characteristics indicate that (i) radial segregation does not affect the axial distribution of total mass and mass fraction, but axial segregation leads to the formation of axial bands; (ii) greater non-dimensionalized collision forces for both the large and small particles develop where the large particles dominate; and (iii) axial segregation gives rise to the variation of t...
Physics of Fluids | 2017
Shiliang Yang; Liangqi Zhang; Kun Luo; Jia Wei Chew
Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared...
Physics of Fluids | 2018
Shiliang Yang; Yuhao Sun; Ya Zhao; Jia Wei Chew
Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the rotating drum operating in the rolling flow regime.Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the r...
Physics of Fluids | 2018
Shiliang Yang; Yuhao Sun; Honghe Ma; Jia Wei Chew
Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axi...
Computers & Mathematics With Applications | 2017
Liangqi Zhang; Shiliang Yang; Zhong Zeng; Jie Chen; Lingquan Wang; Jia Wei Chew
A comparative study on four axisymmetric lattice Boltzmann (LB) models, namely, the kinetic theory based model by Guo etal. (2009), the consistent model by Li etal. (2010), the centered scheme model by Zhou (2011), and our model (based on applying the centered scheme to the Guo etal. (2009) model), is conducted both theoretically and numerically. The finite difference interpretation of the LB method by Junk (2001) is applied to evaluate the accuracy of the models under the incompressible limit. Particularly, the finite difference stencils adopted for the spatial gradient terms in the macroscopic axisymmetric NavierStokes (NS) equations are compared. Besides, the numerical performance (i.e., the numerical accuracy, stability and the convergence efficiency) of the models is compared by two benchmark tests, namely, the unsteady-state Womersley flow and the cylindrical cavity flow. The numerical results accord well with the theoretical analysis. Additionally, it is also found that the numerical stability of the axisymmetric LB models is effectively improved by removing the effects from the non-hydrodynamic variables.
Journal of Membrane Science | 2016
Jingwei Wang; Farhad Zamani; Andy Cahyadi; Jia Yuan Toh; Shiliang Yang; Bing Wu; Yu Liu; Anthony G. Fane; Jia Wei Chew
Journal of Membrane Science | 2016
Jingwei Wang; Bing Wu; Shiliang Yang; Yu Liu; Anthony G. Fane; Jia Wei Chew
Chemical Engineering Science | 2017
Andy Cahyadi; Aditya Anantharaman; Shiliang Yang; S.B. Reddy Karri; Ray Cocco; Jia Wei Chew
Chemical Engineering Science | 2017
Shiliang Yang; Yuhao Sun; Liangqi Zhang; Jia Wei Chew